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KLAUS BETZLER1 , FACHBEREICH PHYSIK, UNIVERSITÄT OSNABRÜCK

This short lecture note recalls some of the well-known properties of spectrometers.
As an addition to textbooks, it may present some help to students working with
such instruments. It is neither intended as a substitute for textbooks in optics nor
as a comprehensive overview over the field of spectroscopy.

1 Grating Mathematics

1.1 Transfer Function

As a general rule, the diffraction transfer function of an array of regularly ordered
elements is the product of the interference function of the regular structure with the
diffraction function of a single element. Applied to a grating, the transfer function
is the product of the interference function of the one-dimensional regular structure
of equidistant points with the diffraction function of a single groove. We will here
restrict our considerations on the interference function. Furthermore, we limit the
calculations to a spectrum of a single sharp line (fixed wavevector ki).

Figure 1: Grating geometry, g is the distance between two
adjacent elements, � and � are the angles of incident and
reflected beam measured versus the normal on the grating
plane.

The grating is illuminated by a plane wave of frequency !i and wavevector ki. In
large enough distance after passing the grating we again can assume plane waves.
The wave generated by one element n can be written as

En;i = E0
n;i � exp(j!it� jkir � j'n;i) (1)

where E0
n;i is the respective amplitude and 'n;i is the phase difference to the first

element. This phase difference is the product of the geometrical path difference
�n and the wavevector ki, where the path difference depends on the geometry (see
Fig. 1):

'n;i = 'n;i(g; �; �) = ki�n(g; �; �) = kinÆ(g; �; �) : (2)
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Here, Æ(g; �; �) is the path difference between the waves from two adjacent grooves

Æ = Æ(g; �; �) = g � (sin�+ sin�) : (3)

The amplitude of the resulting wave is the sum over all m elements

Ei =
mX

n=1

En;i = exp(j!it� jkir) �
mX

n=1

E0
n;i exp(�j'n;i) : (4)

The complex amplitude of this plane wave as a function of the deflection angle is
given by

E0
i = E0

i (Æ) =
mX

n=1

E0
n;i exp(�j'n;i) =

mX

n=1

E0
n;i exp(�jkinÆ) (5)

E0
i thus is a function of the path difference Æ, i. e. of the grating geometry. Eq.5 in

principle is a Fourier transform between k-space and real space.

From Eq. 5 the well-known sin(mx)
sin(x) formula can be derived using the fact that

exp(ax) = (exp(x))a.

Putting E0
n;i = const. = 1 and A = exp(�jkiÆ), Eq. 5 transforms to

E0
i (Æ) =

mX

n=1

Ai(Æ)
n =

1

A
�
1�Am

1�A
: (6)

Furthermore
1�Am

1�A
=

Am=2

A1=2
�
Am=2 �A�m=2

A1=2 �A�1=2
(7)

and
Am=2 �A�m=2 = 2j sin(m=2 � kiÆ) ; (8)

A1=2 �A�1=2 = 2j sin(1=2 � kiÆ) : (9)

Thus

E0
i /

sin(m=2 � kiÆ)

sin(1=2 � kiÆ)
: (10)

This function has major peaks where the denominator is zero, i. e. at angles where
Æ = N � �, N is called the order of the interference. Minor peaks occur at peaks of
the numerator, i. e. where the argument of the numerator is an odd multiple of �=2.

To plot it, one usually calculates the absolute value or the intensity from the com-
plex amplitude. Fig. 2 shows two such typical transfer functions for gratings with
m = 15 and m = 45, respectively.

Fig. 2 shows that the halfwidths of the major peaks are inversely proportional to
the number of grooves in the grating. Here, the ratio of the two halfwidths is
3 : 1, corresponding to groove numbers of 15 and 45, respectively. Yet another
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Figure 2: Transfer function of a grating with 15 lines (black) and with 45 lines
(gray).

interesting fact can be observed in Fig. 2: The amplitude of the first minor peak
stays constant albeit the mean amplitude of the minor peaks decreases – as expected
– with increasing groove number. The explanation is obvious, near the major peaks
the amplitude function behaves like (sin(x))=x, independent of the number of lines
of the grating. The position of the first minor peak is x = 3�=2, its normalized
amplitude thus 2=(3�) = 0:2122.

1.2 Resolution

For defining the resolution of an optical instrument, as a rule of thumb one assumes
that two elements can be just resolved when one maximum coincides with the first
adjacent minimum of the other element. For the transfer function of a grating this
situation is visualized in Fig. 3.

Zeroth, first, and second order are shown, in the first order the two lines just can be
resolved.

According to Eq. 10 the peaks of the two lines (wavevectors k1 and k2) lie at

1

2
k1;2Æ1;2 = N� (11)
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Figure 3: Transfer functions (intensities) of a grating with 10 grooves for two
different wavelengths.

where N is the interference order. The first minima of the lines at
m

2
k1;2Æ2;1 = mN� � � (12)

have to coincide with the respective maxima. In that way the rule-of-thumb resolu-
tion limit is defined. To get it, we e. g. may take the maximum of line one and the
minimum of line two, eliminate Æ1 using Eqs. 11 and 12, furthermore substitute k
for k1 and k +�k for k2. This results in

mN
k +�k

k
= mN + 1 (13)

or finally in
k

�k
= mN ; (14)

the well-known formula for the resolution limit of a grating, number of grooves
times interference order.

It should be noted that only the product is important, thus with a 600 lines/mm
grating one might achieve a better resolution as with a 1200 lines/mm grating of
the same size, when one can use third order instead of first. Yet at higher orders
the spectral working range is reduced accordingly.

The number of grooves m can be written as the quotient of grating width B and
grating constant g (distance between adjacent grooves). Moreover, for usual high
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resolution applications of gratings in optics, the interference order N is chosen
such that g=N � �, the wavelength used. Putting this to Eq.14 and using wavenum-
bers ~� = 1=� instead of wavevectors k = 2�=� one arrives at the simplest formula
for the resolution

�~� = 1=B : (15)

This formula – more or less – is valid for the resolution of all optical instruments
when one takes B as the maximum path difference imposed by the instrument to
the light under investigation. For a grating this maximum path difference equals
approximately the width of the grating.

1.3 Blazing, Echelette Grating

To improve the efficiency of a grating the grooves can be structured in a suitable
way. One possibility to achieve this is to incline the individual reflective elements
of the grating structure by an angle 
 as shown in Fig.4 (echelette grating).

Figure 4: Conventional grating (left)
and echelette grating (right). Note
that the geometry parameters for the
interference function are defined in
the same way in each structure.

This angle 
 is called the blaze angle of the grating. The corresponding wavelength
(blaze wavelength) is defined as (Eq. 3 for � = � = 
)

�blaze = Æ(g; � = � = 
) = 2 � g � sin
 : (16)

This blaze wavelength doesn’t shift much for � 6= �. With � = 
+� and � = 
��
(reflection formula) �blaze shifts to

�blaze(�) = g � [sin(
 + �) + sin(
 � �)] = 2 � g � sin
 � cos � ; (17)

i. e. to only slightly shorter wavelengths, as in conventional spectrometers � usually
is a rather small angle.

From the basic blazing scheme as drawn in Fig. 4 for an ideal echelette grating
one could expect a comparably sharp blazing behaviour of such a grating. Yet one
has to take into account the diffraction function of such a narrow element which
corresponds to the diffraction function of a single slit. As the width of one element
is in the same order of magnitude as the blaze wavelength itself, the behaviour
broadens considerably.
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1.4 Diamond Mask (Apodization)

The relatively intense minor peaks at the side of the major peaks – discussed at the
end of subsection 1.1 – usually are no problem. Yet they may affect measurements
where high resolution is necessary.

Such expressed ‘side lobes’ are a well known fact in Fourier transform. To reduce
it, one usually has to apply a windowing or apodization function. These functions
reduce the amplitudes towards the edges of the function to be Fourier transformed.
Thus the influence of the step-like edges on the transform is minimized. The sim-
plest of these functions is a triangle or – what can be regarded as equivalent – a
diamond. Fig. 5 shows the effect of such a diamond shaped apodization function
on the spectrum. In spectrometers this apodization function is imposed mechani-
cally by a diamond shaped mask on the grating.
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Figure 5: Effect of the ‘diamond mask’ on the side lobes of the transfer function:
gray - without, black - with diamond mask.

Even better results can be achieved using smoother functions than the triangle.
‘Smoother’ here means that not only the function value but also the first derivative
of the function approaches zero at the borders and that there is no step in the first
derivative. A simple function obeying these conditions is the squared sine function.
Using it, the results shown in Fig. 6 are achieved.

As has been shown, the application of such apodization masks improves the prob-
lem of the side lobes considerably. But their use also decreases the light throughput
of an instrument. Both masks discussed here reduce the operating area of a grating
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Figure 6: Effect of a sinesquare shaped mask on the side lobes of the transfer
function: gray - without, black - with cosine mask.

by a factor of 2 which also affects the amplitude function by approximately this
factor. The halfwidth is slightly increased, thus ending up in an intensity loss of
around 2. Using the method in both parts of a double spectrometer squares the loss.
Therefore one should use the diamond masks only where it’s necessary or where
it’s tolerable with regard to the intensity.

2 Spectrometer

To build a Spectrometer, one has to add imaging optics and slits to the grating. One
important parameter to be included is the focus length of the imaging optics.

2.1 Angular Dispersion

The angular dispersion of a grating is the mapping between wavelength variation
and the corresponding variation in the deflection angle. Taking the derivative of
Eq. 2

d

d�
f �(�) = g � sin�+ g � sin� g (18)
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yields the mapping function wanted

d�

d�
= g � cos � : (19)

2.2 Lateral Dispersion

While the angular dispersion still is a property of the grating, the lateral disper-
sion is a property of the complete instrument, the spectrometer. This property
denotes how different wavelengths are laterally dispersed in the exit focal plane of
a spectrometer. It is derived from the angular dispersion by multiplying the angle
difference d� with the focus length f of the optics

d�

dx
=

d�

f � d�
=

g

f
� cos � : (20)

Eq. 20 is the reason for using large focus lengths, i. e. large spectrometers.

2.3 The ‘Real’ Spectrometer

To get a sense for the magnitude of typical properties we calculate the data for the
Spex Spectrometer used in the Raman spectroscopy experiment. The parameters
of the grid used in the spectrometer are 1800 lines/mm and a size of approximately
111 mm (that makes the calculations simple). The focal length of the mirrors used
as imaging optics is 0.85 m.

For the resolution limit of the grating we get (we are working in first order)

~�

�~�
= N �m = 1� 1800 � 111 = 200000 : (21)

The grating period g is 1/1800 mm = 555 nm. Thus – to make things easy – we
will be working at a wavelength of about 555 nm. This yields the typical working
angle of the grating

� � � � arcsin(0:5) = 30Æ : (22)

Using Eq. 20 we get the lateral dispersion

d�

dx
=

g

f
� cos � = 0:57 nm=mm : (23)

From the lateral dispersion we can calculate the bandwidth by multiplying it with
the slit width used. Thus for a slit width of 1 mm the bandwidth is 0.57 nm.

The minimum useful slitwidth is reached when the bandwidth equals the resolution
limit of the grating. This can be calculated using Eq.21 and 23:

�x =
�

N �m
�

f

g � cos�
: (24)

The resulting minimum slitwidth for � = 555 nm is approximately 5 �m.
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2.4 Focus

When adjusting a spectrometer, one of the last adjustments done is that of the focus.
To get optimal resolution, the entrance slit has to be exactly imaged to the plane
of the exit slit. To get a sense for the accuracy necessary, it is useful to consider
the geometrical conditions. We assume that we can tolerate a misadjustment which
produces an image equal to the minimum useful slitwidth instead of a sharp line.
From the geometry in Fig. 7 we deduce

d : b = f : B (25)

which yields d � 40 �m. As two mirrors are moved in parallel, an accuracy of
20 �m in the mechanical adjustment has to be reached.

Figure 7: Imaging geometry
at the exit slit.

2.5 Diffraction at Apertures

The resolution and throughput of an optical instrument might be limited by diffrac-
tion effects at limiting apertures. In a spectrometer, two apertures should be taken
into account, the optics, i. e. grating or mirror, and the slits.

−10 −5 0 5 10
Mirror Diffraction Function [µm]

−100 −50 0 50 100
Slit Diffraction Functions [mm]

Figure 8: Diffraction at spectrometer apertures. Left: Intensity distribution at the
slit position due to diffraction at the imaging optics. For comparison three slit
widths are sketched, 2.5, 5, 10 �m. Right: Slit diffraction functions for three
different slit widths, dotted – 2.5, full – 5, dashed – 10 �m. The shaded area
represents the width of the optics (mirror or grating).
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The width of the diffraction maxima should not exceed the width of the comple-
mentary apertures to get optimal resolution and throughput. Fig.8 shows the calcu-
lated intensity functions. In the left picture the diffraction function from the mirror
at the slit position is shown, for comparison three different slit widths are shaded:
2.5, 5, and 10 �m, respectively. The right picture shows the diffraction functions
for just these slit widths at the mirror positions, the mirror width is shaded. Both
pictures of course are complementary to each other due to the same mathematics.
As can be seen, again 5 �m turns out to be the smallest useful width.

3 Annex: MATLAB Programming

Most of the calculation and the function drawing is done using MATLAB, as an
example the script for Fig. 6 is shown here.

apod = inline(’sin(phi).*sin(phi)’,’phi’);
PH = linspace(-pi/2.5,2*pi+pi/2.5,1601);
M = 30;
N = [1:M];
[ph,n] = meshgrid(PH,N);
E = exp(i*n.*ph);
Total = abs(sum(E,1))/M;
plot (PH/2/pi,Total,’Color’,0.5*[1,1,1],’Linewidth’,2);
hold on;
E = apod(n*pi/(M+1)).*exp(i*n.*ph);
Total = abs(sum(E,1));
Total = Total/max(Total);
plot (PH/2/pi,Total,’Color’,0*[1,1,1],’Linewidth’,1.5);
hx=XLabel(’Path Difference \delta/\lambda’);
hy=YLabel(’Amplitude (normalized)’);
set([gca,hx,hy],’Fontunits’,’normalized’,’Fontsize’,0.05);
% now draw the insets
x = [0.2,0.43,0.43,0.2,0.2];
y = [0.7,0.7,0.9,0.9,0.7];
plot (x,y,’Color’,0.5*[1,1,1],’Linewidth’,2);
x = x+0.37;
plot (x,y,’Color’,0*[1,1,1],’Linewidth’,1.5);
x = linspace(0.57,0.8,100);
phi = (x-0.57)*pi/0.23;
y = [0.8+0.1*apod(phi);0.8-0.1*apod(phi)];
plot (x,y,’Color’,0*[1,1,1],’Linewidth’,1.5);
hold off;
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