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KLAUS BETZLER1, FACHBEREICH PHYSIK , UNIVERSITÄT OSNABRÜCK

This short note presents an additional aspect sometimes important during data fit-
ting – constraints. I assume the reader is familiar with basic aspects of fitting as
presented, e. g., in my short lecture note “Fitting in MATLAB”. Here, we will
mainly discuss constraints imposed on parameter-linear fits like, e. g., a fixed max-
imum position in a polynomial fit.

1 Mathematics of Constraints

As we have seen in the preceding note, a fit functionf is defined for a fit which
generally contains adjustable parameters, thefit parametersai, i = 0 . . . n. This fit
function is used to describe a set of datayk, k = 1 . . .M which – in the simplest
case – are collected as a function ofone independent variablex at the pointsxk.
We would like the fit functionf to describe these data in an approximative way as

yk ≈ f(a0, . . . an, xk) . (1)

To find the parametersai for the best approximation we usually minimize the sum
over the squared residuals

r =
∑
k

(yk − f(a0, . . . an, xk))2 . (2)

The minimum is found by forcing the derivatives ofr with respect to allai to be
zero

∂r

∂a0
= 0,

∂r

∂a1
= 0, . . . ,

∂r

∂an
= 0 . (3)

Whether and how these partial derivatives can be calculated depends on the detailed
form of the functionf . In the preceding note we discussed how to use MATLAB
for several classes of fit functions including polynomials, parameter-linear func-
tions, and arbitrary functions. We could show that for the first two classes exact
results for the fits can be calculated using the MATLAB methodspolyfit and
mldivide whereas for the third very general class of functions optimization
schemes are to be used (e. g.fminsearch ).

It is obvious that a fit approximates the individual data the better the more parame-
ters are used. Constraints introduce global conditions into the fit which reduce the
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number of free parameters. Thus a fit usually gets worse – concerning the sum of
the squared residuals – when we introduce constraints. Yet it will better describe
the facts which motivate the constraints, i. e. the physics behind the data.

Mathematically each constraint imposes an additional relation between the fit pa-
rameters to the equation system Eq.3 describing the fit. In an algebraic approach
one would introduce the constraint equations at a very early point into the fitting
scheme thus reducing the number of equations in the system. For each constraint
one would express one of the parameters in the fit function Eq.1 as a function of
the other ones and eliminate it from the system. In MATLAB it is not necessary
to do this algebraic elimination at an early point, one may introduce the constraint
just before solving the fit problem.

Example. Let’s take a set of data,xi and correspondingyi, a noisy second order
parabola with its minimum atxm = 4:

rand(’state’,1);
x = linspace(0,8,15)’;
y = 0.7*(x-4).ˆ2 + 5*rand(size(x));

To describe the data, we want to use a second order polynomial

Y = a1 + a2X + a3X
2 . (4)

In MATLAB three statements will solve the problem

a = polyfit(x,y,2);
X = linspace(min(x),max(x),100);
Y = polyval(a,X);

We introduce the vectorX with appropriately dense spacing in the second state-
ment in order to get a smooth curve.

Now what if we know that the minimum of the parabolamustbe exactly atxm = 4?
A constraint is imposed on our fit

Y ′(xm) = 0 which means 0 · a1 + 1 · a2 + 2 · a3 · xm = 0 . (5)

We have an additional condition which in principle reduces the number of fit pa-
rameters by one. We can account for this by introducing the constraint condition
into Eq.4.

The Function polyfit of course then is no longer suitable. However, we still
have aparameter-linearfit which can be exactly solved using thematrix left divi-
sionas described. Formally we can introduce the constraint as shown in the short
sequence below. The left and right side of the constraint equation are multiplied by
the appropriate column (C = 3) of the coefficient matrix and subtracted from the
complete system. The solution is then done in the usual way.
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C = 3; % column
xm = 4;
Cvec = [0,1,2*xm]; % left side
Cvec = Cvec/Cvec(C); % normalize
Csca = 0/Cvec(C); % right side
A = [x.ˆ0,x.ˆ1,x.ˆ2];
A = A - A(:,C)*Cvec;
y = y - A(:,C)*Csca;
a = A\y;
a(C) = -Cvec*a; % calculate missing
Y = [X.ˆ0,X.ˆ1,X.ˆ2]*a;

MATLAB will tell you that the matrix is rank deficient but nevertheless will solve
it, settinga2 to zero. After retrievinga2 the new curve can be calculated. Fig.1
shows the results of the unconstrained and constrained fits for a set of noisy data.
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Figure 1: Second order polynomial
fit to a set of noisy data. Dots de-
note the data points, the gray line
represents an unrestricted fit, the
black line a fit with the constraint
that the minimum must be atx = 4.

2 Application: Liquidus and Solidus Curve

An application of such a fit with constraints is the phase diagram crystal growers
use for determining the conditions under which crystals can be grown – compo-
sitions and temperatures. Two curves are important, theliquidus and thesolidus
curve. If a melt is cooled down, crystallization starts at a temperature defined by
the liquidus curve. With a composition, however, which is defined by the solidus
curve for the same temperature. In many cases of mixed crystals there is one spe-
cial composition where a crystal grows at the melt composition. This is called the
congruentlymelting composition. At this composition liquidus and solidus curve
meet each other with a horizontal tangent. Crystal growers like these points as
crystal growth is greatly facilitated there. Therefore these points for most systems
are well known, always better than the rest of the liquidus and solidus curves. If
one constructs these curves mathematically, the facts about the congruently melting
compositions can thus be used as constraints.
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As examples the liquidus and solidus curves of Strontium Barium Niobate are cal-
culated. The experimental data for the liquidus curve were determined using a
special technique of oscillatory growing and melting small crystal samples from
different melts. The compositions of the crystals were measured by X-ray fluo-
rescence analysis. Therefrom the data for the corresponding solidus curve were
derived. The two data sets used for the fits are listed in Table1.

xl 0.194 0.3 0.431 0.547 0.569 0.61 0.7 0.805 0.85 0.9

Tl 1469.7 1479.6 1489.6 1491.1 1491.1 1491.6 1490.7 1488.8 1486.3 1485.3

xs 0.322 0.383 0.477 0.563 0.612 0.689 0.789 0.822

Ts 1469.7 1479.6 1489.6 1491.1 1491.6 1490.7 1488.8 1486.3

Table 1: Liquidus and solidus temperaturesTl andTs (in °C) for Strontium Barium
Niobate of various compositions (Strontium content in the meltxl and in the crystal
xs).

For the fit curves, fourth order polynomial were chosen, the maxima of them, i. e.
the congruently melting composition, were forced toxc = 0.61. Compared to the
example shown in the preceding section, the constraint vector and the coefficient
matrix have to be extended to account for fourth order in the MATLAB script.

Cvec = [0,1,2*xc,3*xcˆ2,4*xcˆ3];

and

A = [x.ˆ0,x.ˆ1,x.ˆ2,x.ˆ3,x.ˆ4];

Figs.2 shows the result for the liquidus curve. For comparison, an unconstrained
fit curve is plotted, too. The maximum of the unconstrained fit is slightly shifted,
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Figure 2: Liquidus curve
of Strontium Barium Niobate.
The dots denote the measured
values, the gray dashed curve is
an unconstrained fourth order
polynomial fit to the data, the
black solid curve is a fit with
the maximum forced tox =
0.61.
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atx = 0.597, and the sum of the squared residuals is slightly less (2.87 compared
to 3.27 for the constrained fit).

Fig.3shows the result for the solidus data. Here the difference between constrained
and unconstrained fit is hardly visible. Again, the maximum is slightly shifted, to
x = 0.605, and the sum of the squared residuals is slightly less (1.72 compared to
1.74).
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Figure 3: Solidus curve of
Strontium Barium Niobate.
The dots denote the measured
values, the black solid curve is
a fourth order polynomial fit
to the data with the maximum
forced tox = 0.61. The gray
dashed curve again represents
the unconstrained fit, the
difference, however, is hardly
detectable.

3 Multiple Constraints: The Phase Diagram

To get the complete phase diagram, we have to introduce an additional constraint
– the temperatures of the liquidus and the solidus curve at the congruently melting
composition must be equal. Therefore we have to calculate a parameter-linear fit
for the whole thing with three constraints.

In such a case of multiple constraints a recursive approach should be used. The
constraints are introduced, one after each other. Then the problem is solved by
matrix left division. The missing parameters then are to be inserted in reverse
order.

We describe the two curves by forth-order polynomials each

Tl(ai, x) = a1 + a2x + a3x
2 + a4x

3 + a5x
4 (6)

Ts(bi, x) = b1 + b2x + b3x
2 + b4x

3 + b5x
4 (7)

with the parameter setsai andbi.

The constraints are defined for the congruently melting compositionxc by

T ′
l (ai, xc) = 0 (8)

T ′
s(bi, xc) = 0 (9)

Tl(ai, xc)− Ts(bi, xc) = 0 . (10)
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The first two constraints could be imposed separately on each of the fit curves, the
third one, however, connects the two curves. Therefore, we have to combine all
data to one large over-determined set of linear equations

1 xl,1 · · · x4
l,1 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 xl,m · · · x4
l,m 0 0 · · · 0

0 0 · · · 0 1 xs,1 · · · x4
s,1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 1 xs,m · · · x4
s,m





a1
...

a5

b1
...
b5


=



tl,1
...
...

tl,m
ts,1

...

...
ts,m


(11)

which in short form may be written as

A · p = t (12)

with the solution for the parametersp (without constraints)

p = A\t . (13)

In MATLAB we start by constructing the matrixA and the vectort from the data
sets(xl, tl) and(xs, ts)

A1 = makematrix(xl’);
A4 = makematrix(xs’);
A2 = zeros(size(A1));
A3 = zeros(size(A4));
A = [[A1,A2];[A3,A4]];
t = [tl’;ts’];

The function makematrix is defined as

function m = makematrix(x)
m = [x.ˆ0,x.ˆ1,x.ˆ2,x.ˆ3,x.ˆ4];

The first two constraints are independent from each other, thus could be introduced
independently. The third one, however, has to take into account the other ones. We
introduce them in stepwise chunks which are then combined to the setCvec of
the three constraint vectors

Cvec = [[0,1,2*xc,3*xcˆ2,4*xcˆ3,0,0,0,0,0];...
[0,0,0,0,0,0,1,2*xc,3*xcˆ2,4*xcˆ3];...
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[ 1, xc, xcˆ2, xcˆ3, xcˆ4,...
-1,-xc,-xcˆ2,-xcˆ3,-xcˆ4]];

Csta = [0;0;0];
N = size(Cvec,1);

After each constraint has been used it should be eliminated from the successive
ones. That can be done in advance in the above set of constraints. We have to
remove the upper constraints from the lower ones, i. e. have to zero the respective
columns in the successive rows. As usual in such problems we define the largest
element as thepivot element in each constraint row, normalize, and subtract itera-
tively in the lower rows

for u = 1:N,
[V,C(u)] = max(abs(Cvec(u,:)));
Cvec(u,:) = Cvec(u,:)/Cvec(u,C(u));
for v = u+1:N,

Cvec(v,:) = Cvec(v,:) - Cvec(u,:)*Cvec(v,C(u));
end

end

After these preparations the problem is solved recursively

for n = 1:N,
A = A - A(:,C(n))*Cvec(n,:);
t = t - A(:,C(n))*Csta(n,:);

end;
p = A\t;
for n = N:-1:1,

p(C(n)) = -Cvec(n,:)*p;
end;

In p now we have the desired parameters and can calculate the fit curves, e. g.

X1 = linspace(0.15,0.9,100);
Y1 = makematrix(X1’)*p(1:5);
plot(X1,Y1,’k’,’Linewidth’,3);

The completed phase diagram is shown in Fig.4.

BTW, the parameters

a1 a2 a3 a4 a5

1436.7 220.7 -293.7 152.2 -35.54

b1 b2 b3 b4 b5

1249.8 1361.5 -2910.2 2825.4 -1063.0
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Figure 4: Phase diagram of
Strontium Barium Niobate.
The dots denote the measured
values for the liquidus and
the solidus compositions and
temperatures, the black curves
are fourth order polynomial fits
to the data with the maximum
forced tox = 0.61.

4 Arbitrary Functions

We discussed the constraint problem for parameter-linear fits. There the applica-
tion is straight-forward and the result is always unique. If we, instead, deal with
arbitrary functions, the approach is similar in mathematics but slightly different
to apply. The constraints then e. g. can be introduced directly within the function
called by fminsearch .
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