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This short lecture note recalls some of the properties of Fabry-Perot interferome-
ters. As an addition to textbooks, it may present some help to students working
with such instruments. It is neither intended as a substitute for textbooks in optics
nor as a comprehensive overview over the field of Fabry-Perot interferometers.

1 Principles of the Fabry-Perot Interferometer

The Fabry-Perot interferometer is an optical instrument which uses multiple-beam
interference. Its transfer function is that of a plane-parallel plate which is described
in textbooks for optics [1].

1.1 Interference at a Plane-Parallel Plate

First we calculate the transmitted and reflected intensity when shining a plane wave
of monochromatic light on a plane-parallel plate.

Figure 1: Interference at a plane-parallel plate
of thickness d.

The situation is depicted in Fig. 1, light of intensity Ii, wavelength � and wavevec-
tor k = 2�=� is incident on a plate of thickness d and refractive index n. The two
surfaces affected may both be characterized by a reflectance R and a transmittance
T , defined for the light intensities. The absorption of the plate material should be
negligible, thus R+ T = 1 (energy conservation).

To calculate the transmitted and reflected intensities It and Ir, we have to sum
up the amplitudes of the respective waves, taking into account the phase shifts
imposed by the plate. Reflectance and transmittance for the amplitudes at the plate
interfaces, r, r0, t, and t0, respectively, are defined according to Fig. 2.

Relations between the reflectance and transmittance values for amplitudes can be
derived using time reversal invariance. If losses due to absorption can be neglected,
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Figure 2: Definition of reflectance and trans-
mittance at an interface between two non-
absorbing materials.

the propagation of waves must be reversible. Fig. 3 shows the ‘normal’ and the
reversed beam propagation through a surface and denotes the corresponding am-
plitudes.

Figure 3: ‘Normal’ (left) and time reversed
(right) reflection and transmission at an inter-
face.

A comparison yields

tt0 + rr = 1 (1)

tr0 + rt = 0 : (2)

Therefore

r0 = �r ; r02 = r2 = R ; tt0 = T = 1�R : (3)

Fig. 1, to yield a descriptive visualization, is sketched with oblique incidence of
the light – the derivation of the transfer function, yet, will be done using normal
incidence.

The reflected amplitude is calculated by summing all reflected waves. Different
waves m differ in phase due to the optical path difference 2mdn and in amplitude
due to reflection and transmission by tt0 � r02m�1. The first reflected wave has to
be considered with special care, here the reflectance for the ‘out-in’ direction – r –
has to be used. Putting all together, we get for the reflected amplitude

Ar = Air +Ai exp(jk2dn)tt
0r0

1X
m=0

r02m exp(jk2mdn) (4)

= Air �Ai exp(jÆ)Tr
1X

m=0

(R exp(jÆ))m; Æ = 2kdn (5)

= Air �Ai exp(jÆ)Tr
1

1 �R exp(jÆ)
(6)

= Air
1 �R exp(jÆ) � T exp(jÆ)

1�R exp(jÆ)
= Air

1� exp(jÆ)

1�R exp(jÆ)
(7)

and for the intensity

Ir = Ar �A�r (8)
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which – after some conversions – yields

Ir
Ii

=
2R(1� cos Æ)

1� 2R cos Æ +R2
=

4R sin2 Æ

2

(1�R)2 + 4R sin2 Æ

2

: (9)

For the transmitted amplitude the expression gets a little bit simpler

At = Aitt
0

1X
m=0

r02m exp(jk2mdn) (10)

= AiT
1X

m=0

Rm exp(jÆ) (11)

= Ai

T

1 +R exp(jÆ)
(12)

and
It
Ii

=
T 2

1� 2R cos Æ +R2
=

T 2

(1�R)2 + 4R sin2 Æ

2

: (13)

Eq. 13 of course also may be obtained directly from Eq.9 using Ir + It = Ii (en-
ergy conservation law). The expressions for the reflected and transmitted intesities
Eqs. 9 and 13 are known as Airy’s formula.

One can define a quality factor for the reflectivity

QR =
4R

(1�R)2
(14)

which simplifies the expressions Eqs. 9 and 13 further

Ir
Ii

=
QR sin2 Æ

2

1 +QR sin2 Æ

2

(15)

It
Ii

=
1

1 +QR sin2 Æ

2

: (16)

This quality factor QR sometimes is denoted as finesse coefficient (see section1.4
f.).

It should be noted that at the transmission peaks all of the incident intensity is
transmitted, nothing reflected, even when using highly reflecting surfaces.

Fig. 4 shows a plot of the transmittance function Eq.16 for different values of QR.
Instead of Æ, the corresponding interference order N = Æ=2� is noted.

Two properties are characteristic for each of the transmission functions, the width
of the maxima and the suppression of light throughput between the maxima.
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Figure 4: The transfer function It=Ii of a plane-parallel plate (Fabry-Perot plate)
for different reflectivities (quality factors 0.5, 5, 50, and 500, respectively, corre-
sponding to reflectivities R of 0.1, 0.42, 0.75, 0.91).

1.2 Applications

The transfer function shows high transmission when certain conditions for the
wavelength of the light and the plate geometry are fulfilled, otherwise the light
is more or less blocked. These conditions can be adjusted by changing the wave-
length and/or the geometry. Thus Fabry-Perot plates can be used to measure or
to control light wavelengths or to measure geometric properties. The geometric
conditions are defined by several properties including thickness, refractive index,
and beam direction. As a Fabry-Perot arrangement is very sensitive with regard
to the geometry, small deviations in these properties can be measured. The same
sensitivity facilitates various optical applications. A Fabry-Perot plate, e. g., can
be used in a laser resonator to select single longitudinal modes, the adjustment is
made by tilting it with respect to the beam direction.

Very important is the application for high-resolution optical spectroscopy. To use
a Fabry-Perot interferometer there, one of the geometric properties has to be ad-
justable and to be related in a suitable way to wavelength variations. With plates,
this can be achieved when using divergent light, thus different beam directions.
More customary are air-spaced interferometers, where spacing or air-pressure are
used for tuning.
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1.3 Fringes of Equal Inclination

Using – as shown in Fig. 5 – as light source for a Fabry-Perot plate either an ex-
tended light source in the focal plane of a collimating lens or a divergent point
source produces concentric circular interference fringes due to the inclination-
dependent phase shifts (fringes of equal inclination).

Figure 5: Experimental arrangements for fringes of equal inclination. Left: ex-
tended source in the focal plane of the collimating lens, right: divergent point
source.

Typical fringe patterns for monochromatic light sources (calculated for plates of
different reflectivity) are shown in Fig. 6.

Figure 6: Fringes of equal inclination for Fabry-Perot plates of different reflectivity.
From left to right: finesse coefficients = 1, 10, 100.

Arrangements like that on the right of Fig. 5 – a diffusor plate in combination with
a Fabry-Perot plate – can be used as a simple means to check linewidth and mode
structure of lasers.

1.4 Finesse

It is costumary to define a numerical value which characterizes the width – or better
the sharpness – of the maxima. This number is called Finesse of an interferometer
and defined as the ratio of peak distance to peak halfwidth.

To get it, the points (phases Æ) where the transfer function reaches a value of 0.5
have to be calculated

1

1 +QR sin2 Æ

2

!
= 0:5 ; (17)
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QR sin2
Æ

2
= 1 and for jÆ � 2N�j � 1 : Æ = � 2p

QR

: (18)

The distance (phase difference) between two peaks is 2�, thus the Finesse F is

F =
�

2

p
QR =

�
p
R

1�R
: (19)

As only the influence of the reflectivity on the linewidth is considered here, often
the term Reflectivity Finesse is used to distinguish it from other properties influenc-
ing the transfer function (divergence – see Sec.2.3, plate flatness – see Sec. 2.4).

1.5 Contrast

To rate the suppression between maxima, the Contrast is defined as ratio of peak
height to the minimum intensity. The transmission minimum at Æ = � and at
equivalent phases define a Contrast value C of

C = QR + 1 : (20)

1.6 Resolution

The resolution of an optical instrument is defined by the bandwidth of a spectral
line, i. e. the broadening imposed on the line by the instrument. We have to cal-
culate what spectral linewidth �� is equivalent to this instrumental linewidth. As
hitherto, we assume normal incidence. At the maxima, the phase difference Æ is
defined by

Æ = 2kdn =
4�

�
dn = 2N� : (21)

The linewidth can be expressed by the finesse

�Æ =
2�

F
; (22)

and equated with a spectral linewidth

�Æ =
2�

F
=

4�

�
dn� 4�

�+��
dn : (23)

Thus the resolving power of the instrument is defined by the product of the finesse
F and the interference order N

�

��
=

2F

�
dn = F �N : (24)

Eq. 24 shows that, with a finesse of 100, the resolving power of a 100 mm wide
grating is exceeded for dn > 0:5 mm. Using air-spaced Fabry-Perot interferome-
ters, values for d up to more than 100 mm can be easily achieved. The resolution
then – expressed as frequency – is around 10 MHz.
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1.7 Free Spectral Range

Taking Eq. 24, the resolution of a Fabry-Perot plate can be improved by increasing
dn, the optical path difference between the two reflecting surfaces. But, doing this,
also the interference order is increased, leading to more problems with overlapping
orders. As a measure for the useful working range (no overlapping orders) the Free
Spectral Range of an instrument is defined. It is calculated by equating the phase
shift for a certain wavelength �, order N + 1 with that for �+ FSR, order N :

2dn

�
=

2dn

�+ FSR
+ 1 (25)

FSR = ��FSR =
�2

2dn
: (26)

Compared to the resolution
��FSR
��res

= F : (27)

2 Tunable Fabry-Perot Interferometers

Parallel-plate Fabry-Perot interferometers, often denoted as Etalons, can be tuned
by inclining them with respect to the beam direction, thus varying the phase shift
inside the plate. This principle is used, e. g., to select single modes inside a laser
resonator. For spectroscopic applications, yet, different schemes have to be ap-
plied.

2.1 The Air-Spaced Fabry-Perot Interferometer

Nearly all tuning schemes use interferometers where two highly reflective glass
plates are separated by a plane-parallel ‘plate’ of air. The scheme is complementary
to the plane-parallel plate discussed and obeys the same equations.

Fig. 7 shows the principle, the two plates usually are slightly wedge-shaped to
suppress interference due to the outer surfaces. As the optical distance between the

Figure 7: Air-spaced Fabry-Perot
interferometer. Parallel light is
achieved using a point source in the
focus of the illuminating lens.

two plates is d � n, a convenient way to change it is to vary the air pressure. That
was classically used, keeping the distance d constant by mechanical spacers and
varying the refractive index n of the air by changing the pressure. Nowadays, this
technique is – at best – only of historical interest.
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2.2 The Scanning Fabry-Perot Interferometer

The preferred method used for scanning is to move one of the two reflecting plates
mechanically. The principle is shown in Fig. 8. As the mechanical scanning dis-
tance necessary is in the order of the light wavelength this scanning can be done by
piezoelectric actuators.

Figure 8: Scanning Fabry-Perot in-
terferometer, principle. The space d
between the two reflecting surfaces is
varied by moving on of the plates.

The actuators can be driven at moderate voltages (100. . . 500 V), to get linear scans,
usually sawtooth waveforms are used.

Piezoelectric scanning has a variety of advantages compared to other scanning
techniques:

� Both, slow and fast scanning modes are possible. In fast scanning modes,
the interferogram may be displayed online on an oscilloscope.

� The scanning voltage can be directly used as measure for the plate position.

� The final adjustment can be easily done by automatically or manually ad-
justing the drive voltages of the (usually three) piezo stacks.

� Stabilization schemes can be easily included by controlling the drive volt-
ages of the piezo stacks. The controller, e. g., can try to hold a constant
position and height of the peaks [2, 3].

There is also one disadvantage of piezoelectric actuators, they often show a large
temperature drift, thus they have to be driven in controlled mode.

2.3 Pinhole, Divergence

So far we have considered the ideal case of an exact plane wave or exactly parallel
light beams. One can construct this ideal case using a point source in the focus
of an illuminating lens (Fig. 8). In a real-world system, yet, one always has to
deal with extended light sources. To approach the ideal case, pinholes are used
as an approximation to a point source. The light throughput of the instrument is
proportional to the pinhole area, but, increasing the pinhole size, also increases the
divergence of the light in the instrument. Thus, to maximize the efficiency, the
pinhole size has to be optimized.
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Figure 9: Divergence imposed by a
pinhole of radius a.

From Fig. 9, the angle between central and outermost beams can be derived to be

� = arcsin
a

f
� a

f
: (28)

This results in a corresponding path difference

�d = d(
1

cos�
� 1) � d

�2

2
� d

a2

2f2
; (29)

which will impose an additional phase shift and thus broaden the peaks in the
interferogram. To keep a good resolution, the additional broadening due to this
path difference should be less than the halfwidth of the peaks

�Æpinhole < �Ælinewidth ; (30)

using Eqs. 22 and 29

2k�d =
2�

�
d
a2

f2
<

2�

F
; (31)

for the pinhole radius

a < f

s
�

Fd
: (32)

For typical geometry data – d = 5 mm, f = 200 mm, � = 0:5 �m, F = 100 – this
results in a radius a < 200 �m.

The influence of the pinhole on the linewidth of a Fabry-Perot interferometer can
be denoted as Pinhole Finesse which is defined as

FP =
�

d
� f

2

a2
: (33)

2.4 Plate Flatness

Due to the multiple reflections in a Fabry-Perot interferometer, deviations in the
homogeneity of the reflecting surfaces are ‘multiplied’, too.

3 Enhancements to the Fabry-Perot Interferometer

As has been shown in the previous sections, the Fabry-Perot interferometer com-
bines excellent resolution with a rather poor free spectral range and, moreover,
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a low contrast which doesn’t allow measurements of spectra with high intensity
differences. To overcome these drawbacks, several enhancements have been intro-
duced.

3.1 Combination with a Spectrometer

A classical setup is the combination of a Fabry-Perot plate with a spectrometer as
shown in Fig. 10. The spectrometer provides for gross resolution, the Fabry-Perot
interferometer allows for the determination of spectral linewidths or line splittings.
As light source a slit perpendicular to the drawing plane of Fig.10 is used. Thus,
for each of the lines in such a spectrum, partial fringes of equal inclination are
produced which can be evaluated. Examples for such spectra can be found in
textbooks on optics [1].

Figure 10: Combination of a Fabry-Perot plate with a conventional prism spec-
trometer. As light source on the left a slit is used. Thus a gross spectral resolution
in the drawing plane due to the prism is achieved. Perpendicular to the drawing
plane, partial fringes of equal inclination are generated – as shown on the right –
which allow for an evaluation of finer structures.

3.2 Multipass

To enhance the contrast of a Fabry-Perot interferometer, it can be used more than
once. The principle of such a multipass scheme for three passes is shown in Fig.11.
A narrower light beam is used which – using appropriate retroreflectors – is di-
rected three times through the instrument.

Figure 11: Principle of a multipass inter-
ferometer. The light passes three times
through the interferometer.

Figs. 12 (linear scale) and 13 (logarithmic scale) show the enhancements in contrast
due to the multipass scheme.
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Figure 12: Comparison of the transfer functions between a single pass (left) and a
triple pass interferometer (right) for two different finesse coefficients (50 and 500).
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Figure 13: As Fig. 12, but with logarithmic scaling.

3.3 Tandem

To overcome the free-spectral-range problem, a similar approach as that already
discussed uses two different interferometers with different spectral ranges in con-
junction, one for coarse, one for finer resolution.

The two interferometers work in different interference orders N1 and N2 respec-
tively. They have to be synchronized such that in the spectral region investigated
the interference maxima for all wavelengths coincide:

� =
2(dn)1
N1

=
2(dn)2
N2

(34)

�+�� =
2((dn)1 +�(dn)1)

N1

=
2((dn)2 +�(dn)2)

N2

: (35)

Eq. 35 also ensures that

2((dn)1 +�(dn)1)

N1 + 1
6= 2((dn)2 +�(dn)2)

N2 + 1
for N1 6= N2 ; (36)

thus neighboring orders are suppressed.
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The synchronization condition defined by Eqs. 34 and 35 necessitates that – be-
sides a synchronization at � – also the tuning of the two interferometers has to be
synchronized according to

�(dn)1 : �(dn)2 = (dn)1 : (dn)2 : (37)

One way to achieve this is to use air spaced interferometers with fixed spacing
which are tuned by the air pressure in a common compartment. Equal �n values
in both systems obviously fulfill the above condition.

A different, very elaborate technique is used in the interferometers build by J. R.
Sandercock [4]. The principle scheme is sketched in Fig. 14: The two interferom-
eters are tilted against each other by an angle �, the adjustment is made such that
the ratio between the two spacings obeys the condition

d2 : d1 = cos� : (38)

Figure 14: Tandem interferome-
ter with mechanical coupling of
the two movable plates. The dou-
ble arrows indicate the direction
of movement.

When tuning, the movements of the two movable plates are coupled using joint
mechanics; the direction of the movement is indicated in Fig. 14. Through this
mechanical setup it is ensured that

�d2 : �d1 = cos� (39)

which – combined with Eq. 38 – directly fulfills the synchronization condition
Eq. 37.

The following figures show calculated examples for interferograms measured with
a tandem interferometer. The interference orders of the two interferometers are
N1 = 1000 and N2 = 1100, respectively.

Fig. 15 shows the interferograms for a single monochromatic spectral line, Fig.16
for two adjacent lines. The upper two interferograms are measured with each of the
individual interferometers, the lower shows the effect of the tandem combination.

An expressed effect is the drastically increased free spectral range. But, as can
be also stated from the figures, due to the poor contrast of an interferometer, the
neighboring orders are not fully suppressed. Instead they show up like weak spec-
tral lines.
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Figure 15: Interferogram of a monochromatic spectral line measured by a tandem
interferometer. 1: interference order N1 = 1000, 2: N2 = 1100,

P
: combination

of the two interferometers.
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Figure 16: Interferogram of two adjacent monochromatic spectral lines measured
by a tandem interferometer. 1: interference order N1 = 1000, 2: N2 = 1100,

P
:

combination of the two interferometers.

To suppress these neighboring orders better, the tandem principle has to be com-
bined with the multipass technique. The resulting effect is shown in Fig.17. []
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Figure 17: Effect of the combination of a tandem interferometer with the multipass
technique (triple pass). 1 and 2: single interferometers in triple pass,

P
: combina-

tion of tandem and triple pass.
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