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“Physics would be dull and life most unfulfilling if

all physical phenomena around us were linear.

Fortunately, we are living in a nonlinear world.

While linearization beautifies physics, nonlinear-

ity provides excitement in physics.”

Y. R. Shen in The Principles of Nonlinear Optics
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1. Introduction

Linearity is one of the basics of classical optics. Light waves usually do not inter-
act. In other fields of electricity and magnetism, yet, nonlinearities are known since
scientists have begun to study the phenomena in more detail. Saturation effects
at high (static) electric or magnetic fields and nonlinear electrical characteristics of
devices like vacuum tubes, semiconductor diodes, and even resistors are quite fa-
miliar examples. In the field of optics, however, nonlinear effects became a subject
of interest only after the invention of the laser.

To measure the nonlinear response of matter to electromagnetic waves in the
optical region, in general high fields are necessary, starting at about 1 kV/cm.
The corresponding light intensities of some kW/cm2 necessitate laser beams. As
laser physics started with the ruby laser with its high pulse intensities, it took only
few years after the invention of the laser [1] that many classical experiments in
nonlinear optics were successfully performed. Among the first were the second
order processes like the experiments on second harmonic generation by Franken
et al. [2] in 1961, on sum frequency generation by Bass et al. [3] in 1962, and on
optical rectification by Bass et al. [4] in 1962.

Since that time Nonlinear Optics has become a rapidly growing field in physics.
Nonlinearities are found everywhere in optical applications. Presently, many opti-
cal materials are of special interest in information technologies, photonics as sup-
plement and extension of electronics plays a steadily increasing role. Nonlineari-
ties in the properties of these optical materials are often of significant relevance for
the technological application – sometimes useful, sometimes hampering. To un-
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derstand these nonlinearities – and to use them for new effects – will be of basic
importance for the further development of photonic applications.

These lecture notes cover some basic topics in nonlinear optics, they accompany
lectures held for the Ph. D. students in the graduate college Nonlinearities of Opti-
cal Materials.

The first part gives a short introduction to the physics of crystals and the treatment
of symmetry-dependent properties. Then the nonlinear susceptibility is shortly
discussed followed by a section about harmonic generation with an emphasis put
on second-order and high-order processes. Thereafter various techniques for the
measurement of nonlinear optical properties of crystals are described. A subse-
quent chapter deals with non-collinear harmonic generation processes and some
of their applications.

References

[1] T. H. Maiman. Stimulated Optical Radiation in Ruby. Nature 187, 493–494
(1960).

[2] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich. Generation of Optical
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4. Nonlinear Optical Susceptibilities

All electromagnetic phenomena are governed by the Maxwell’s equations for the
electric and magnetic fields. An overview is given in the lecture notes on Linear
Response Theory by P. Hertel [1] and in numerous textbooks in the field.

In the linear case, the polarization P may be written in a simple form

P(r, t) = ε0

∫ ∞

−∞
χ(1)(r− r′, t− t′) · E(r′, t′)dr′dt′ (4.1)

where χ(1) is the linear susceptibility of the medium. Usually monochromatic plane
waves are assumed, E(k, ω) = E(k, ω) exp(ik · r− iωt), then a Fourier transforma-
tion applied to Eq. 4.1 yields

P(k, ω) = ε0χ
(1)(k, ω)E(k, ω) (4.2)

with
χ(1)(k, ω) =

∫ ∞

−∞
χ(1)(r, t) exp(−ikr + iωt)drdt . (4.3)

The dependence of χ on k is only weak, in nearly all practical cases it can be
neglected.
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4.1. Nonlinear Polarization

In the nonlinear case, P can be expanded into a power series of E – at least as
long as E is sufficiently weak

P(r, t) = ε0

∫ ∞

−∞
χ(1)(r− r′, t− t′) · E(r′, t′)dr′dt′

+ε0

∫ ∞

−∞
χ(2)(r− r1, t− t1; r− r2, t− t2) : E(r1, t1)E(r2, t2)dr1dt1dr2dt2

+ε0

∫ ∞

−∞
χ(3)(r− r1, t− t1; r− r2, t− t2; r− r3, t− t3) : E(r1, t1)

×E(r2, t2)E(r3, t3)dr1dt1dr2dt2dr3dt3

+ . . .

(4.4)
where χ(n) is the nth-order nonlinear susceptibility. As in the linear case, the prob-
lem can be Fourier transformed. Yet, for E now a sum of monochromatic plane
waves should be assumed

E(r, t) =
∑

i

E(ki, ωi) , (4.5)

yielding for the polarization

P(k, ω) = P(1)(k, ω) + P(2)(k, ω) + P(3)(k, ω) + . . . (4.6)
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with

P(1)(k, ω) = ε0χ
(1)(k, ω) · E(k, ω) ,

P(2)(k, ω) = ε0χ
(2)(k = ki + kj, ω = ωi + ωj) : E(ki, ωi)E(kj, ωj) ,

P(3)(k, ω) = ε0χ
(3)(k = ki + kj + kl, ω = ωi + ωj + ωl)

: E(ki, ωi)E(kj, ωj)E(kl, ωl) .

(4.7)

The χ(n)(k, ω) can be expressed in a similar way as in the linear case as integrals
over the respective χ(n)(r, t). Again, the dependence on k can be neglected.

χ(n) is an (n + 1)st-rank tensor representing material properties. Using Einstein’s
summation convention, the above equations may be rewritten in component form,
e. g.

P
(2)
k (ω) = ε0χ

(2)
kmn(ω = ωi + ωj)Em(ωi)En(ωj) . (4.8)

4.2. The Phase-Matching Problem

We have arrived now at the nonlinear polarization of a medium. The fundamen-
tal waves generate an oscillating polarization through the medium which oscillates
with ω. The phases at different locations are defined and connected by the fun-
damental waves travelling through the medium. That means that the polarization
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wave travels through the medium at a velocity v(ωi, ωj) for the fundamental fre-
quencies ωi, ωj.

The local polarization at every location acts as a source of electromagnetic dipole
radiation. The generated free waves, yet, travel through the medium at a velocity
v(ω) characteristic for their own frequency ω.

The velocities are defined by the respective refractive indices and – due to the dis-
persion present in all materials – generally are different. In an extended medium
the two relevant waves – polarization wave and generated free wave – thus come
out of phase after a typical distance commonly referred to as coherence length.
The sum free wave is amplified due to constructive interference up to this coher-
ence length, then attenuated due to destructive interference. No efficient genera-
tion of nonlinear radiation seems to be possible. Yet, there are some solution to
the problem.

4.3. Mechanisms for the Nonlinear Polarization

As for the linear polarization in matter, various mechanisms are responsible for the
nonlinear polarization, too. Depending on the frequencies of the applied fields and
of the resulting nonlinear polarizations the possible mechanisms may contribute
more or less. At comparably low electromagnetic fields all of these mechanisms
(excepts for the last one) can be regarded as being strictly linear, nonlinearities
show up when the fields are increased.
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Electronic polarization: The distortion of the outer-shell electronic cloud of atoms,
ions, and molecules, respectively, in gases, liquids, or solids, compared
to the undisturbed state. This mechanism has very fast response time (<
10−15 s). Most optical frequency mixing effects such as second harmonic
and third harmonic generation, sum-frequency mixing, optical parametric os-
cillation, four-photon parametric interaction use this mechanism.

Ionic polarization: The contribution from an optical-field induced relative motion
(vibration, rotation in molecules, optical phonons in solids) between nuclei
or ions. The response time of this mechanism is around 10−12 seconds.
Examples: Raman resonance-enhanced four-wave-mixing effects, Raman
enhanced refractive index change.

Molecular reorientation: It denotes the additional electric polarization contribu-
tion from an optical-field induced reorientation of anisotropic molecules in
a liquid. The response time of this process is dependent on the rotational
viscosity of molecules in the liquid and is approximately 10−12–10−13 sec-
onds. Examples: Stimulated Kerr scattering, Kerr-effect related refractive
index change.

Induced acoustic motion: It is the polarization contribution from an optical in-
duced acoustic motion related to the so-called electrostriction interaction.
The response time of this mechanism is around 10−9–10−10 seconds de-
pending on the medium. Examples: Brillouin scattering, self focusing, optical
breakdown.
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Induced population change: The contribution of electrons to the polarization de-
pends on their eigenstates. Their populations are changed by one-photon or
two-photon absorption and by other resonant interactions (e. g. in Raman
processes). The response time strongly depends on the respective elec-
tronic transition, but is in general slower than in the above discussed mech-
anisms. Examples are all resonance-enhanced nonlinear processes.

Spatial redistribution of electrons: Excited charge carriers in solids – electrons
or holes – can be spatially redistributed due to a spatially modulated light
pattern. This is a major effect in all so-called photorefractive materials. The
response time depends on the mobility of the carriers and on the internal
electric field, in general it is slow compared to the response times discussed
up to here. Examples are all processes which can be summarized under the
term Photorefractive Nonlinearity.

Spatial redistribution of ions: There are some materials where not electrons but
– also or instead – ions are redistributed by a spatially modulated light pat-
tern. Of course this effect again is considerably slower. It is only of minor
importance within the photorefractive materials.

4.4. The Anharmonic Oscillator as a Qualitative Model

As a crudely qualitative but nevertheless vivid model for the nonlinear polarization
one can use the classical anharmonic oscillator. Physically, the oscillator describes
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an electron bound to a core or an infrared-active molecular vibration. The potential
may exhibit anharmonicities of odd or even symmetry as sketched in Fig. 19.

x

V(x)

x

V(x)

x

V(x)

Figure 19: Potential forms for the anharmonic oscillator. Left: harmonic potential
Vh(x) = a

2
x2, middle: odd-symmetric anharmonicity Vo(x) = Vh(x) + b

3
x3, right:

even-symmetric anharmonicity Ve(x) = Vh(x) + c
4
x4. The dashed curve denotes

the respective harmonic part.

The equation of motion for the oscillator in the presence of a driving force F can
be written as

d2x

dt2
+ γ

dx

dt
+ ax+ bx2 + cx3 = F . (4.9)

For the harmonic case b = c = 0, for an odd-symmetric anharmonicity b 6= 0, for an
even-symmetric c 6= 0. Both b and c are assumed to be small so that they can be
treated as perturbations.

As driving force we consider an applied electric field with Fourier components at
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the frequencies ±ω1 and ±ω2

F =
q

m

[
E1

(
e−iω1t + eiω1t

)
+ E2

(
e−iω2t + eiω2t

)]
. (4.10)

q and m are charge and mass of the oscillating particle (electron, ion, etc.).

When we neglect the anharmonic perturbations b and c, we get the first order
solution x(1) for x

x(1) =
∑

i

x(1)(ωi) , x(1)(ωi) =
(q/m)Ei

ω2
0 − ω2

i − iωiγ
e−iωit (4.11)

where ω2
0 = a.

For a density of N such classical anharmonic oscillators per unit volume the in-
duced electric polarization is simply

P = Nqx . (4.12)

Higher order solutions are obtained by substituting lower order solutions for the
nonlinear terms in Eq. 4.9, e. g. bx(1) 2 for bx2.

First we look at the second order solution in the presence of an odd-symmetric
anharmonicity only (b 6= 0, c = 0). Omitting the first order solution, we use −bx(1) 2

as driving force
d2x

dt2
+ γ

dx

dt
+ ax = −bx(1) 2 . (4.13)
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−bx(1) 2 introduces terms with frequencies 2ωi, ωi + ωj, ωi − ωj, ωi − ωi = 0. Thus
we have included second-harmonic generation, sum-frequency and difference-
frequency generation, and optical rectification. A typical solution (here for second
harmonic generation) is of the form

x(2)(2ωi) =
−b(q/m)2E2

i

(ω2
0 − ω2

i − iωiγ)2(ω2
0 − 4ω2

i − i2ωiγ)
e−i2ωit . (4.14)

Second we assume that only an even-symmetric anharmonicity is present which
means that b = 0, c 6= 0. We now have to use −cx(1) 3 as driving force

d2x

dt2
+ γ

dx

dt
+ ax = −cx(1) 3 . (4.15)

Obviously the driving force now introduces only terms with an odd number of ωs,
e. g. 3ωi, 2ωi − ωi = ωi, ωi + ωj + ωk, ωi + ωj − ωk. Thus third-harmonic gen-
eration, nonlinear refraction and similar effects are described. Even-symmetric
anharmonicities are present in all types of materials, even in isotropic ones like
liquids and gases. From the above we can conclude that such materials are only
suited for odd-harmonic generation and other odd-order effects.

From Eqs. 4.11, 4.14, and 4.12 we can roughly estimate the ratio between linear
and second order nonlinear polarization. If we assume that we are far from any
resonance, i. e. ω0 � ωi, we find for this ratio∣∣∣∣P (2)

P (1)

∣∣∣∣ ≈ ∣∣∣∣ qbEmω4
0

∣∣∣∣ . (4.16)
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For the limit that for a bound electron harmonic and anharmonic force, mω2
0x and

mbx2, are of the same order of magnitude, one can assume that both are of the
order of magnitude of the total binding force of the electron |qEat| (one can show
that this is only valid for large anharmonicities b)

|qEat| ≈ mω2
0x ≈ mbx2 (4.17)

or, eliminating x,

|qEat| ≈
mω4

0

b
. (4.18)

Eq. 4.16 then becomes
P (2)/P (1) ≈ E/Eat (4.19)

and for the susceptibilities
χ(2)/χ(1) ≈ 1/Eat . (4.20)

This can be generalized to

P (n+1)/P (n) ≈ E/Eat and χ(n+1)/χ(n) ≈ 1/Eat . (4.21)

The inner-atomic fields Eat are in the order of 3 × 1010 V/m [2], thus with χ(1) ≈ 3
we arrive at 10−10 m/V for the second order nonlinear susceptibility. Some typ-
ical measured values are listed in Table 7.1 of Ref. [2]. They range from ap-
proximately 10−12 m/V for materials with low anharmonicities (Quartz: χ

(2)
xxx =

0.8 × 10−12 m/V) up to 10−10 m/V for typical nonlinear optical materials (LiNbO3:
χ

(2)
zzz = 0.8× 10−10 m/V).
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4.5. Structural Symmetry of Nonlinear Susceptibilities

The susceptibility tensors must remain unchanged upon symmetry operations al-
lowed for the medium. This reduces the number of independent and nonzero ele-
ments. The most important conclusion from this property is that for all centrosym-
metric crystals and for all isotropic media (gases, liquids, amorphous solids) all
tensor elements of the even-order susceptibility tensors (χ(2), χ(4), . . . ) must be
zero. This has been already shown qualitatively for the model of the anharmonic
oscillator in section 4.4. Thus, e. g., no second harmonic generation can be ob-
served in such media. Odd-order susceptibility tensors, yet, will be non-zero and
will provide nonlinear effects. Using gases or metal vapors, e. g., only odd-order
harmonics can be produced.

4.6. Permutation Symmetry of Nonlinear Susceptibilities

When tensors are multiplied with vectors, usually the order of the vector multi-
plication can be changed. In nonlinear optics it should not matter which of the
fundamental fields is the first to be multiplied. From this, permutation symmetry for
the nonlinear susceptibilities follows, for the second order

χ
(2)
ijk(ω1, ω2) = χ

(2)
ikj(ω2, ω1) , (4.22)
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or for the third order susceptibility

χ
(3)
ijkl(ω1, ω2, ω3) = χ

(3)
iklj(ω2, ω3, ω1) = χ

(3)
iljk(ω3, ω1, ω2) = χ

(3)
ijlk(ω1, ω3, ω2) = . . .

(4.23)
Besides this trivial one, a more general permutation symmetry can be defined due
to time reversal symmetry resulting in relations like

χ
(2)
ijk

∗(ω = ω1 + ω2) = χ
(2)
jki(ω1 = −ω2 + ω) = χ

(2)
kij(ω2 = ω − ω1) . (4.24)

Time reversal symmetry can be applied as long as absorption can be neglected.

If the dispersion of χ can also be neglected, then the permutation symmetry be-
comes independent of the frequencies. Consequently, then a very general per-
mutation symmetry exists between different elements of χ: elements remain un-
changed under all permutations of the Cartesian indices. This so-called Klein-
man’s conjecture or Kleinman symmetry [3] reduces the number of independent
elements further. Yet, it should be noted that it’s a good approximation only at
frequencies far from resonances such that dispersion really can be neglected.

4.7. Example: Strontium Barium Niobate

Strontium Barium Niobate is a crystal which is in a ferroelectric phase at room
temperature, its point symmetry group is 4mm. The symmetry operations present
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in the point group include

4 :

 x → y
y → −x
z → z

  x → −x
y → −y
z → z

  x → −y
y → x
z → z



m1 :

 x → −x
y → y
z → z

  x → x
y → −y
z → z



m2 :

 x → y
y → x
z → z

  x → −y
y → −x
z → z

 .

(4.25)

The tensor elements transform like products of the respective coordinates, they
must remain unchanged under all the transformations listed. The mirror plane m1

changes x into −x or y into −y, thus all elements with an odd number of indices 1
or an odd number of indices 2 have to be zero. The mirror plane m2 transform x to
y and y to x, thus elements where 1s are replaced by 2s have to be equal.

For the second order susceptibility tensor for second harmonic generation, e. g.,
we arrive at the nonzero elements

χ311 = χ322 , χ333 , χ131 = χ113 = χ232 = χ223 . (4.26)

All other elements must be zero. Kleinman symmetry further reduces the number
of independent elements to two (χ311 and equivalent, and χ333).
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4.8. Contraction of Indices

Especially for the susceptibility tensor for second harmonic generation it is com-
mon to write it in a different form. As the last two indices can be exchanged, there
are 18 different elements left from the full set of 27. These 18 are written as a
2-dimensional matrix dij, the last two indices kl of the elements χikl are contracted
to one index j such that

11 → 1 , 22 → 2 , 33 → 3 , 23, 32 → 4 , 31, 13 → 5 , 12, 21 → 6 .
(4.27)

Using this matrix form of the susceptibility tensor, the second harmonic polarization
is written as

 Px

Py

Pz

 = ε0

 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

×


E2

x

E2
y

E2
z

2EyEz

2EzEx

2ExEy

 . (4.28)
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5. Harmonic Generation

One of the most important nonlinear optical processes for technical applications
is the generation of harmonics from laser light. We will discuss here second-
harmonic generation, widely used for producing visible and near ultraviolet coher-
ent light, and the generation of higher harmonics in gases, used for EUV (extreme
ultraviolet) light sources.

5.1. Second-Harmonic Generation

Second-harmonic generation (SHG) was the first experiment in the history of non-
linear optics carried out by Franken et al. [1] soon after the invention of the Ruby
laser [2]. Presently it is one of the main applications of nonlinear optics, maybe
the only really important one. In the preceding chapter we already discussed some
important points concerning the nonlinear susceptibility. The general symmetry ar-
guments have to be adopted in a suitable way for SHG. The responsible tensor is
of third rank, materials for SHG thus must be non-centrosymmetric. For practical
reasons, usually the d-tensor described is used instead of the more general χ-
tensor. Because of a different definition, most authors use the convention d = χ/2
for the tensor elements.

The local second harmonic polarization can be calculated according to Eq. 4.7.
For the generated second-harmonic intensity, yet, we face the phase-matching
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problem shortly discussed. Fig. 20 visualizes the principle.

x
1

x
2

x
3

E(1)

P(2)

E(2)

E(2)

E(2)

x
1

x
2

x
3

E(1)

P(2)

E(2)

E(2)

E(2)

Figure 20: Fundamental wave E(1), induced second-harmonic polarization P (2),
and second-harmonic waves E(2), generated at the positions x1, x2, and x3 in a
nonlinear material for two different cases. Left: second-harmonic waves travel at
the same velocity as the fundamental wave, all are in-phase throughout. Right:
different velocities, the usual case, mismatch between the phases of the second-
harmonic waves E(2).

Due to dispersion present in all materials, waves of different frequencies travel at
different velocities, yielding a phase-mismatch between second-harmonic waves
generated at different positions in a nonlinear material. To get the total second-
harmonic intensity produced, we have to integrate over the generated waves taking
into account the different velocities. For simplicity we omit all pre-factors and all
rapidly oscillating factors and calculate only the phase-factors with respect to x =
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0. For E(1)(x) and P (2)(x) we can write

E(1)(x) = E(1)(0) · e−ik1x , (5.1)
P (2)(x) = χE(1)(x)E(1)(x) = χE(1)(0)E(1)(0) · e−i2k1x . (5.2)

Taking P (2) as driving force in a wave equation for E(2) yields

E(2)(x) = K ′ · P (2)(x) = K · E(1)(0)E(1)(0) · e−i2k1x (5.3)

where the K contains all necessary constants like nonlinear susceptibility or re-
fractive indices.

E(2) now travels through the material with a velocity characteristic for the frequency
ω2 = 2ω1 and wave vector k2. Thus at an arbitrary position x′ where we could
measure the second-harmonic

E(2)(x′) = E(2)(x) · e−ik2(x′−x) = K · E(1)(0)E(1)(0) · e−ik2x′
e−i(2k1−k2)x . (5.4)

Assuming homogeneous material for 0 < x < L, we have to integrate

E
(2)
total(x

′) = K · E(1)(0)E(1)(0) · e−ik2x′
∫ L

0

e−i(2k1−k2)xdx

= K · E(1)(0)E(1)(0) · e−ik2x′ 1

i∆k

[
ei∆kL − 1

]
= K · E(1)(0)E(1)(0) · e−ik2x′

ei∆k
2

L 1

i∆k

[
ei∆k

2
L − e−i∆k

2
L
]

= K · E(1)(0)E(1)(0) · e−ik2x′
ei∆k

2
L · sin(∆k L/2)

∆k/2
(5.5)
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with
∆k = k2 − 2k1 =

2π

λ2

n(ω2)− 2
2π

λ1

n(ω1) =
4π

λ1

(n(ω2)− n(ω1)) . (5.6)

λ1 and λ2 = λ1/2 are the wavelengths of the fundamental and second harmonic
waves, respectively, in vacuum.

Often a characteristic length, the so-called coherence length Lc, is defined. Yet
one has to be careful as two different definitions are used – the length after which
the sine reaches its maximum or the length after which the sine changes sign.
Thus it may be defined as

either Lc =
π

∆k
or Lc =

2π

∆k
. (5.7)

The generated second-harmonic intensity depends mainly on the phase mismatch
∆k, and of course on the square of the input intensity and the tensor elements
involved. For the latter often a so-called effective tensor element is used which is
a suitable combination for the geometry considered

I(2) = C · d2
eff · I(1) 2 · sin2(∆k L/2)

(∆k/2)2
. (5.8)

If one is interested in calculating numerical results for I(2), an appropriate constant
C may be adopted from textbooks on nonlinear optics.

As already discussed, due to dispersion, ∆k in Eq. 5.8 generally is non-zero, the
intensity oscillates in a sine-square way. If, however, ∆k approaches zero, we have
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to calculate the limit
lim

∆k→0

sin(∆k L/2)

∆k/2
= L . (5.9)

In this case, the second-harmonic intensity increases quadratically with L – at
least as long as we are in the limit of low second-harmonic intensities where I(1) is
unchanged (undepleted fundamental wave approximation). The spatial variation
of second-harmonic intensities for some characteristic values ∆k are sketched in
Fig: 21.

5.2. Phase Matching

For an efficient generation of second-harmonic light it is highly desirable to achieve
phase matching, ∆k = 0. Usually the refractive indices are governed by normal
dispersion which means that in Eq. 5.6 the difference n(ω2) − n(ω1) is larger than
zero, revealing ∆k > 0. One way out is to utilize the birefringence which is present
in crystals of all symmetry classes except the cubic one. Uniaxial classes with two
different principal refractive indices include the tetragonal, hexagonal and trigonal
ones; biaxial classes, where all three principal indices are different, include the
orthorhombic, monoclinic and triclinic ones.

The refractive index of a material is derived from the linear susceptibility, a second
rank tensor. This tensor can be visualized by a general ellipsoid – general means
that all three axes of the ellipsoid are of different lengths and that the orientation
is arbitrary. However, this ellipsoid has to be compatible with the point symmetry
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Figure 21: Second-harmonic intensities as a function of the position in the nonlin-
ear material for different ∆k.

of the material regarded. That means that certain symmetry elements may fix the
orientation of the ellipsoid and may force two or all three axes to be equal. This re-
veals the above classification. In all uniaxial classes, the orientation of the ellipsoid
is fixed, and the ellipsoid is rotationally symmetric. In the biaxial classes where all
three axes are different in length, the orientation is fixed for orthorhombic crystals,
one axis is fixed for monoclinic crystals, and the orientation is completely free for
triclinic ones. For the latter two cases, moreover, the orientation is wavelength
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dependent.

The k-vector of light propagating in the material defines a plane perpendicular to
it through the center of the ellipsoid. This plane intersects the ellipsoid yielding
an ellipse as intersection curve. The directions of the major and minor axes of
this ellipse define the two polarization directions allowed, the length of these axes
determine the respective refractive indices. These two different indices for every
crystallographic direction can be plotted as index surfaces which reveal the two
refractive indices as intersections with the respective k-vector direction.

This directional dependence of the refractive indices for the two cases – uniaxial
and biaxial – is schematically shown in Fig. 22. For every direction of the wave
vector in an uniaxial or biaxial crystal two different refractive indices are found
which are valid for the two light polarizations possible. The two refractive indices
define the two possible velocities of light – a maximal and a minimal one – for
every propagation direction. Two fixed polarization directions inside the crystal,
perpendicular to each other, are connected with the two refractive indices. There
are obvious distinct exceptions to this general rule of two different refractive in-
dices. For the uniaxial case in the left drawing light propagating along the crys-
tallographic z-axis finds only one refractive index. The same is valid in the biaxial
case for light travelling along the direction denoted by the gray line in the right
drawing. For these special propagation directions arbitrary light polarizations are
possible. These crystallographic directions are called the optic axes. There is one
in uniaxial crystals – the z-axis – and there are two in biaxial crystals – the gray
line and its symmetry equivalent.
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Figure 22: Refractive index surfaces in an uniaxial crystal (left) and in a biaxial one
(right). The two surfaces indicate the refractive indices for the respective crystallo-
graphic directions.

Utilizing the birefringence of a material, it may be possible to find propagation di-
rections where the velocities of fundamental and harmonic waves are identical.
Drawing the index surfaces for fundamental and harmonic frequencies, these di-
rections are found as the intersection curves between the index surfaces. Fig. 23
shows this for an uniaxial material, one of the simplest cases. The index surfaces
for the ordinary index at the fundamental frequency, n(1)

o , and for the extraordi-
nary index at the harmonic frequency, n(2)

e , are sketched, the intersection curve
is a circle, all propagation directions with a fixed angle Θ versus the z-axis are
phase-matched.
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Figure 23: Refractive index surfaces for
the ordinary index at the fundamental fre-
quency, n(1)

o , and for the extraordinary in-
dex at the harmonic frequency, n(2)

e in a
uniaxial material with so-called negative
birefringence (ne < no). The gray in-
tersection curve (circular in the uniaxial
case) determines the phase-match angle
Θ.

The idealized conditions sketched in Fig. 23, which enable phase matching, may
be reality for certain materials, yet they need not. To check whether phase match-
ing is really possible, one has to consider the dispersion behavior of the material.
Typical dispersion curves for uniaxial crystals are sketched in Fig. 24. A funda-
mental wavelength of 1000 nm, consequently a harmonic at 500 nm are assumed.
Low birefringence (left) inhibits phase matching, higher birefringence (right) al-
lows it. Or – to put it in other terms – every birefringent material has a certain
restricted wavelength range with a characteristic short-wavelength limit, in which
phase-matching is possible.

The refractive index of the harmonic beam is defined as a function of the angle Θ
as

1

n2
e(Θ)

=
cos2 Θ

n2
0

+
sin2 Θ

n2
e

. (5.10)
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Figure 24: Dispersion of the refractive indices in uniaxial crystals. Left: low birefrin-
gence, right: higher birefringence. The refractive index for the ordinary fundamen-
tal wave is fixed, the index for the extraordinary harmonic wave can be angle-tuned
along the vertical lines drawn.

From Eq. 5.10, in turn the phase-matching angle Θ can be deduced demanding
a value ne(Θ) at the harmonic wavelength to be equal to no at the fundamental
wavelength. A real solution for Θ then indicates that we are inside the wavelength
range where phase matching is possible.

The above considerations assume that the two relevant fundamental waves are
identical. This is referred to as Type I phase matching. Instead, two different
fundamentals can be combined which usually are split from one incident wave.
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We then speak of Type II phase matching.

The angle Θ also determines the effective tensor element deff used in Eq. 5.8. A
suitable combination defined by the polarization directions involved has to be used.

Besides the phase-matching issues discussed, some more conditions have to be
fulfilled to make a material suitable for efficient second-harmonic generation:

Absorption: The material considered must not absorb both at the fundamental
and the harmonic wavelength. This is usually automatically fulfilled as near
the absorption edge of a material the refractive indices rise considerably and
thus prevent phase matching.

Susceptibility Tensor: Trivially, the point symmetry of the crystal must allow for
at least one nonzero tensor element contributing to the geometry necessary
for phase matching.

5.3. Quasi Phase Matching

Already in one of the first theoretical publications on nonlinear optics [3], Bloem-
bergen and coworkers discussed a different method to achieve phase matching
for nonlinear optical processes, especially for second-harmonic generation. They
proposed to reverse the sign of the respective tensor element periodically after
an appropriate crystal thickness. In ferroelectric materials this can be done by an
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antiparallel poling of crystal regions, ferroelectric domains. The geometry for a
typical example (lithium niobate or lithium tantalate) is sketched in Fig. 25.

Figure 25: Periodically poled domain structure for second-harmonic generation in
materials like lithium niobate or lithium tantalate.

The usage of such periodically poled structures is commonly referred to as quasi
phase matching. The momentum conservation law is fulfilled with the help of the
additional vector K which describes the periodicity of the antiparallel domains:

k2 = k1 + k′1 + K . (5.11)

The second-harmonic intensity achieved through the periodically poled geome-
try is depicted in Fig. 26. The intensity dependencies are calculated for phase-
matched, quasi-phase-matched, and non-phase-matched conditions under the as-
sumption of identical tensor elements d involved.

For real SHG materials, however, the situation often can be dramatically improved
when large tensor elements can be used which do not suit conventional phase
matching. Let us look at lithium niobate as an example. For phase-matched SHG
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.] Figure 26: Intensities of phase-

matched (dark gray parabola),
quasi-phase-matched (black curve),
and non-phase-matched SHG
(light gray), assuming identical ten-
sor elements and identical beam
geometries.

from 1000-nm light the tensor element d31 is used with an absolute value of about
4.3 pm/V [4]. The effective d has approximately the same value, as the phase
matching angle is nearly 90°. In a suitable periodically poled domain pattern,
yet, quasi phase matching can be attained using the tensor element d33 with an
absolute value of approximately 27 pm/V [4]. For quasi phase matching an effec-
tive d may also be defined using the approximation drawn as dashed parabola in
Fig. 26, it is the original d multiplied by 2/π. Thus we arrive at deff of approximately
17 pm/V, four times the value of d33, yielding a sixteen fold second harmonic inten-
sity. Fig. 27 shows the two dependencies.

Fig. 27 clearly demonstrates the attractiveness of quasi-phase-matching geome-
tries. They gained increasing interest in the recent years because of several rea-
sons:
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Figure 27: Case study lithium nio-
bate: Comparison of the intensities
of phase-matched and quasi-phase-
matched SHG, using d31 and d33, re-
spectively. For the calculations ideal
conditions are assumed: a phase-
matching angle of 90° for the PM,
and an exact periodically poled do-
main pattern without any deteriora-
tion due to domain walls for the QPM
second-harmonic intensity.

• Successful techniques for the fabrication of periodically poled structures have
been developed [5].

• Nonlinear optical materials – especially lithium niobate and lithium tantalate
– have been improved to facilitate poling.

• The demand for doubling of low light intensities has increased due to the
rapid development of semiconductor lasers.

• Quasi phase matching extends the wavelength range for nonlinear optical
processes up to the full transparency range of the material.

It should be emphasized that the technique is only applicable to ferroelectric non-
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linear optical materials, thus is not suitable for a number of classical materials.

A periodically poled structure is mathematically described by a square function,
and in the fourier transform of such a square function all odd harmonics of the
base periodicity are present. Thus a periodically poled structure is also usable in
higher order [6]. Besides odd harmonics of the square function, even harmonics
can be reached by changing the ‘duty cycle’ appropriately. For higher orders, K in
Eq. 5.11 has to be replaces by mK where m is the order. Compared to first order,
the effective d is reduced by this factor m. Therefore higher orders are only used
when it is not possible to fabricate structures for first order.

5.4. Walk-Off

A well-known effect in birefringent materials is visualized in Fig. 28: Unpolarized
light propagating in an arbitrary direction is refracted in two different ways (double
refraction).

Fig. 28 shows this double refraction for calcite, a crystal with point group 32/m –
thus optically uniaxial. Inside the crystal, the light is split into two parts for the two
possible polarizations. The ordinary light passes straightly, the extraordinary one
is distinctly displaced.

As discussed in the subsection about phase matching, for second-harmonic gener-
ation birefringent crystals are used. Ordinary and extraordinary polarizations have
to be applied for the two waves, fundamental and harmonic, to match the relevant
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Figure 28: Double refraction: The left picture shows the propagation of unpolarized
light through an optically isotropic (left) and an anisotropic crystal (right) – calcite.
In the right picture two polarizers are used to select ordinary and extraordinary
light polarization. Picture taken from Ref. [7].

refractive indices. Thus we do suffer the described problem of double refraction
which is called walk-off in the field of nonlinear optics as it causes a geometric
walk-off of one beam from the other one. Fig. 29 shows such a walk-off geometry
for an ordinary fundamental and an extraordinary harmonic beam in an arbitrary
crystal direction of a uniaxial crystal. The effect of the walk-off is a reduction of
that interaction volume where the second-harmonic intensity increases quadrati-
cally as a function of crystal length. The regime of quadratic increase is restricted
to the overlapping volume between fundamental and harmonic beam, i. e. to an
effective length Le. For a crystal of length L the total intensity then scales with
L · Le instead of L2 (see Eqs. 5.8 and 5.9).
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Figure 29: Walk-Off: Ordinarily polarized fundamental and extraordinarily polar-
ized harmonic beam. The regime of quadratic intensity increase is restricted to
the overlapping volume between the two beams. It decreases when the funda-
mental beam is strongly focussed. As simplification only the part of the harmonic
beam generated in the entrance region of the crystal is drawn, the contribution of
the successive regions is omitted.

For a qualitative description of the walk-off, Maxwell’s equations have to be con-
cerned:

∇× E = −Ḃ , ∇×H = Ḋ + J , ∇D = ρ , ∇B = 0 . (5.12)

Assuming monochromatic plane waves

E(r, t) = E0e
i(ωt−kr) , H(r, t) = . . . , D(r, t) = . . . , B(r, t) = . . . (5.13)

and no charges and currents, we arrive at

∇D = k · D = 0, ∇B = k · B = 0 (5.14)
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and

∇× E = k× E = −Ḃ = −iωB , ∇×H = k×H = Ḋ = iωD . (5.15)

Assuming further that we are not disturbed by magnetics, i. e. that the relative
permeability is µ = 1, thus B = µ0H, from Eqs. 5.14 and 5.15 follows that k, D
and B are perpendicular to each other. Due to Eq. 5.15 (left) B is perpendicular to
E, thus k, E and D are lying in the same plane perpendicular to B. D and E are
connected by the permittivity ε

D = ε0εE (5.16)

where ε is a second rank tensor of the form

ε =

 ε11 0 0
0 ε22 0
0 0 ε33

 . (5.17)

For optically isotropic materials, ε11 = ε22 = ε33, thus always E ‖D. For uniaxial
materials, ε11 = ε22, thus E ‖D for ordinary polarization and E ∦ D for extraordinary
polarization.

The direction of energy flow is defined by the Poynting vector

S = E×H (5.18)

which for extraordinary polarization thus is not parallel to the k-vector – we have
walk-off. This uniaxial situation is sketched in Fig. 30.
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Figure 30: Light propagation in a uniaxial material, the optical axis is in z-direction.
Left: Ordinary polarization, E and D (not shown) are parallel to each other and
perpendicular to k. Middle: Extraordinary polarization, E not perpendicular to k,
thus S not parallel to k – walk-off. Right: only xz-plane shown. ψ is the walk-off
angle.

The walk-off angle usually is in the order of some degrees. Quantitative formulas
are given in many articles and textbooks for the various doubling geometries. For
the case of negative birefringent materials (ordinary fundamental, extraordinary
harmonic wave) and the usual case of Type I phase matching,e. g., Boyd et al. [8]
give the formula

tanψ =
1

2
(no

ω)2

{
1

(ne
2ω)2

− 1

(n0
2ω)2

}
sin 2Θ . (5.19)

Eq. 5.19 shows that there is no walk-off, i. e. the walk-off angle ψ will be zero,
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for Θ = 0 and for Θ = 90◦. In uniaxial crystals that means propagation along
and perpendicular to the optical axis, respectively. With k along the optical axis
of course no phase matching is possible. However, it might be possible for k
perpendicular to it if the magnitude of the birefringence suits. Often this can be
tuned within certain limits by varying the temperature. This sort of phase matching
is known as 90◦ phase matching or temperature phase matching. As the two
relevant refractive index surfaces in this case do not intersect, instead are tangent
to each other, thus allowing for a larger angle uncertainty, it is also referred to as
Non Critical Phase Matching.

There is a second type of geometries where walk-off is completely absent – that’s
in all quasi-phase-matching schemes. The periodically poled structures there are
always made for a wave propagation along a highly symmetric crystal direction. To
make use d33 in lithium niobate, e. g., the beams propagate perpendicular to the
c-direction of the crystal, allowing the polarization of both, fundamental and har-
monic wave, respectively, to be in c-direction. This complete absence of walk-off
problems is an important additional advantage of quasi-phase-matching configu-
rations.

5.5. High-Order Harmonic Generation

For an efficient generation of harmonic light commonly crystals are used which
show large nonlinear susceptibilities. For the generation of even harmonics, e. g.
the second harmonic, these crystals, in addition, have to be acentric. A very crucial
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condition, however, is good transparency, the absence of absorption, at both the
fundamental and harmonic wavelengths. In solids, this can be accomplished down
to approximately 150 nm. For shorter wavelengths, therefore, one has to use other
arrangements.

Besides the scientific interest, shorter wavelengths are important at least in two
fields of current optical applications:

• Lithographical techniques for the fabrication of integrated circuits are limited
by the wavelength of light employed. Presently excimer laser light of 192 nm
is used in combination with silica optics, the next step will be 157 nm in
combination with calcium fluoride optics. This will be the limit of excimer
lasers and conventional optics. Beyond this limit, new light sources (and new
optical concepts) are in demand.

• For many studies – especially in biological systems – one would like to have
single short pulses of X-rays. A very interesting X-ray wavelength region
is the so called ‘water window’ (3–4 nm) where water and carbon have a
reduced absorption. This allows diffraction and absorption imaging of bio-
logical systems on a molecular scale, and – if pulses can be used – with an
extremely good time resolution.

To accomplish the generation of harmonic light well below 150 nm, media trans-
parent in this region – gases or clusters – have to be used. Atoms, molecules,
clusters in general are centrosymmetric or even isotropic, thus only odd harmonics
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are generated. For a good conversion efficiency, the light of a pulsed high-power
laser is focused onto the gaseous medium. Doing this, the electromagnetic field
becomes of the same magnitude as the Coulomb field, which binds a 1s elec-
tron in a Hydrogen atom (5.1 × 109 Vm−1). At such high fields various nonlinear
phenomena can happen [9], three typical processes are sketched in Fig. 31:

Figure 31: Excitation processes in atoms in strong laser fields [9]. ATI: above
threshold ionization, MI: multiple ionization, HHG: high-order harmonic generation.

• Electrons initially in the ground state absorb a large number of photons, many
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more than the minimum number required for ionization, thus being ionized
with a high kinetic energy. This process, shown for the first time in 1979 [10],
is called Above Threshold Ionisation (ATI).

• Not only one, but many electrons can be emitted from atoms subject to strong
laser fields. They can be emitted one at a time, in a sequential process,
or simultaneously, a mechanism called direct, or non-sequential. Double
ionization of alkaline earth atoms was observed as early as in 1975 [11] and
the first evidence for non-sequential ionization of rare gas atoms was first
demonstrated in 1983 [12].

• Finally, efficient photon emission in the extreme ultraviolet (EUV) range, in
the form of high-order harmonics of the fundamental laser field (HHG), shown
for the first time in 1987 [13, 14], can occur.

The described processes are mutually competing, all are scaling with a high power
of the incident light intensity. Only the third one (HHG) leads to the generation of
coherent EUV light.

About the spectrum generated, Anne L’Huillier, one of the pioneers in this field,
writes [9]: A high-order harmonic spectrum consists of a sequence of peaks cen-
tered at frequency qω, where q is an odd integer. Only odd orders can be ob-
served, owing to inversion symmetry in an atomic gas. A HHG spectrum has a
characteristic behavior: A fast decrease for the first few harmonics, followed by a
long plateau of harmonics with approximately constant intensity. The plateau ends
up by a sharp cut-off. Most of the early work on harmonic generation concentrated
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on the extension of the plateau, i. e. the generation of harmonics of shorter wave-
length. Today, harmonic spectra produced with short and intense laser pulses
extend to more than 500 eV, down to the water window below the carbon K-edge
at 4.4 nm. A large effort has been devoted to optimize and characterize the proper-
ties of this new source of EUV radiation. A milestone in the understanding of HHG
processes was the finding by Kulander and coworkers in 1992 [15] that the cut-off
position in the harmonic spectrum follows the universal law Emax ≈ Ip + 3Up. This
result was immediately interpreted in terms of the simple man’s theory, and led to
the formulation of the strong field approximation (SFA). A realistic description of
HHG involves, however, not only the calculation of the single atom response, but
also the solution of propagation (Maxwell) equations for the emitted radiation.

Simplified, the above expression for Emax means that the maximum energy in the
generated harmonic spectrum corresponds to the maximum energy imposed on
a quasi-free electron by the electromagnetic field of the incident laser pulse. A
schematic sketch of this strong field approximation is given in Fig. 32. In the strong
electromagnetic field of the focused laser beam the atomic potential is highly dis-
torted, an electron is accelerated. When the field reverses, the electron can fall
back to the ionic core and emit photons during the collision process. The result
is a burst of X-rays. This process repeats itself many times over the duration of
the laser pulse each time the electromagnetic field reverses sign. As shown in
Fig. 33, the X-ray pulses itself are significantly shorter (sub-femtosecond) than the
period of the original electromagnetic wave. Using extremely short light pulses will
produce a single X-ray pulse in the attosecond regime for each of the incident light
pulse.
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Figure 32: Potential distortion in an ex-
tremely strong light field. An electron is
accelerated in the strong field and pro-
duces X-rays when falling back to the
ionic core (picture taken from Ref. [16]).

−5 0 5
0

1

2

Time [fs]

X−Ray Pulses Figure 33: Electromagnetic field oscilla-
tion in an ultrashort light pulse. Near
the zero crossings bunches of X-rays are
generated.

The wavelength of the emitted light depends on the amount of energy acquired
by the electrons over a half-cycle. Yet, despite the similarity to bremsstrahlung no
continuous X-ray spectrum is generated. Due to the short overall interaction time
the excitation and the X-ray generation are not independent from each other. Thus
conservation laws and symmetry relations have to be obeyed, yielding peaks at
odd harmonics of the fundamental frequency.

Several techniques can be used to enhance special regions in the generated X-ray
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spectrum. For lower energies, e. g., enhancement due to resonances in the elec-
tronic potential scheme is possible. Of course this doesn’t work at higher energies
where the electrons are regarded as quasi-free. And, albeit not so expressed as
in the case of nonlinear crystals, phase matched [17] and quasi phase matched
arrangements [18] are important enhancement schemes also in the case of har-
monic generation in gases.
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6. Measurement of Nonlinear Optical Properties

Nonlinear optical materials are important for many applications in optics. There-
fore an intensive search for new, better materials is still in progress in many re-
search institutes. To characterize these new materials, several techniques have
been developed which are widely applied [1]. Various properties are of impor-
tance. If a material should be usable, e. g., for second-harmonic generation, it
should belong to a non-centrosymmetric point group. Thus a test for this should
be possible at a very early state, the powder technique may be used for this pur-
pose. All other investigation methods need larger crystals which are more difficult
and time-consumptive to fabricate. Larger crystals in general are also necessary
for the investigation of the linear optical properties important for nonlinear optical
applications like transmission range and refractive index.

6.1. Powder Technique

This technique is described in the comprehensive article A Powder Technique for
the Evaluation of Nonlinear Optical Materials by S. K. Kurtz and T. T. Perry in
1968 [2]. Since that time it is widely used as one of the simplest methods for
a rapid classification of new materials. For the application of the technique the
material is only required in powder form (which is easily available in most cases).
Thus it can be applied at a very early state after the first fabrication of a new
material, for instance in a chemists lab. The basic configuration for powder SHG

http://www.physik.uni-osnabrueck.de
mailto:Klaus.Betzler@uos.de


Nonlinear
Optics

Fachbereich Physik

Contents

JJ J I II

Page 117 of 199

Go Back

Full Screen

Close

Quit

�
08. Mai 2005

Klaus Betzler

is shown in Fig. 34 (the figure is taken from the original article, in a present-day
setup several parts would be replaced by up-to-date ones).

Figure 34: Setup
for studying the
second-harmonic
generation in pow-
der samples.

Light from a Q-switched Nd:YAG laser is directed onto the powder sample, the
second-harmonic light is collected by appropriate optics and – after filtering out
the fundamental light – detected by a photomultiplier. In this original setup the
photomultiplier signal and a monitor signal from the fundamental beam are dis-
played on an oscilloscope.

In the powder sample the light, fundamental and harmonic, is randomly scattered.
This scattering can be greatly reduced when the powder is immersed in a liquid of
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similar refractive index. Usually, however, immersion is regarded as an additional
complication, and, what is more important, it is difficult to find liquids with match-
ing refractive index – especially when working with materials of high refractive
index and/or large birefringence. Thus the usual way is to work without immersion.
The scattering leads to an angular distribution, which is similar to that of a planar
radiator obeying Lambert’s cosine law, with an appreciable amount in backward
direction. This angular dependence is sketched in Fig. 35.

In a practical application it is thus advisable to collect the generated light from all
spatial directions. This can be done by placing the sample within an integrating
Ulbricht sphere [3, 4] which collects a certain amount of light from all directions.

The generated harmonic intensity depends in a characteristic way on the aver-
age particle size in the powder. This size dependence is different for materials
which are phase matchable and those which are not. The two dependences are
schematically sketched in Fig. 36.

A detailed theory for these dependences can be found in [2], to understand it in
principle, we can find simpler arguments. Let us assume that we have a powder
volume V completely filled with randomly oriented particles of size r. The number
of particles will be in the order of N = V/r3. All particles are illuminated by the
fundamental laser light, every particle contributing an area A = r2. Due to the
random orientation, the second harmonic intensities of different particles add up
incoherently. According to Fig. 21, for a non-phase-matchable material the SHG
intensity Is for a single particle of size r will increase quadratically for small sizes
Is(r < Lc) ∝ r2, then approaching a constant average value Is(r > Lc) ∝ L2

c . The
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Figure 35: Angular distrib-
ution of second harmonic
generated in a powder
sample (picture taken
from [2]). When the powder
is immersed in an index-
matching liquid, a narrow
angular distribution in for-
ward direction shows up,
otherwise a broad angular
distribution in forward and in
backward direction is found.

total SHG intensity I = N ·A ·Is then is proportional to r for r < Lc and proportional
to L2

c/r for r > Lc.
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Figure 36: Schematic representation of different particle-size dependences for
phase-matchable and non-phase-matchable materials.

For a phase-matchable material we get the same result for small particle sizes. For
large particles the single-particle intensity still would further increase quadratically
with the particle size – but only for particles properly oriented. The ‘sharpness’ of
this condition scales with particle size, thus the share of properly oriented particles
scales with r−1. Putting all together, we get constant intensity for large particle
sizes in a phase-matchable material.

Using the powder technique, materials can be classified into different categories at
a very early state of the investigations. Thus an early decision about new materials
is possible. These categories include:
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Centrosymmetric: No second-harmonic intensity found by the powder technique.

Phase Matchable: Constant second-harmonic intensity at increasing particle sizes.

Non Phase Matchable: Second-harmonic intensity decreasing as a function of
the particle size.

The decision about centric symmetry can be found in one measurement without
the necessity of using particle size fractions. A test for phase matching can be
made using several particle sizes which have to be larger than the average co-
herence length. Comparing different materials – known and unknown ones – it is
also possible to get a rough estimate about the magnitude of the effective tensor
elements of the SHG tensor.

6.2. Maker Fringe Method

The observation of periodic maxima and minima in the second-harmonic intensity
as a plane parallel slab is rotated about an axes perpendicular to the laser beam
was first reported by Maker et al. [5] for SiO2 in 1962. The geometry for such a
measurement is sketched in Fig. 37. A thin crystal platelet is rotated, thus a vari-
ation in the wave vector mismatch ∆k between the harmonic polarization (forced
wave) and free harmonic waves is caused

|∆k| = |k2ω − 2kω| = (4π/λ)|n2ω cos β2 − nω cos β1| (6.1)
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Figure 37: Rotating slab geometry for the measurement of Maker fringes. The
plane parallel slab is rotated around the indicated axis which is perpendicular to
the beam direction. The generated second-harmonic intensity is measured as a
function of the rotation angle.

where β1 and β2 are the angles of refraction for the fundamental and harmonic
waves, respectively. As shown in Fig: 38, the wave vector mismatch ∆k remains
perpendicular to the crystal faces even for arbitrary nonnormal incidence of the
fundamental beam. This can be derived from simple geometric considerations.
From Snellius law we get

sin β1 = sinα/nω and sin β2 = sinα/n2ω . (6.2)

The lengths of the wave vectors are

|2kω| = (4π/λ)nω and |k2ω| = (4π/λ)n2ω (6.3)
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Figure 38: Wave vectors of the second-
harmonic polarization (forced wave) and of
the free harmonic wave and the correspond-
ing mismatch ∆k for a fundamental wave in-
cident at an arbitrary angle α onto a slab.

where λ is the fundamental wavelength. Their components parallel to the crystal
faces are equal

|2kω,||| = |2kω| sin β1 = (4π/λ) sinα and |k2ω,||| = |k2ω| sin β2 = (4π/λ) sinα .
(6.4)

Therefore the difference vector ∆k is perpendicular to the crystal faces and can
be expressed according to Eq. 6.1.

The total second-harmonic intensity is found by integration over the slab thickness
L (similar as in section 5.1, Eqs. 5.5–5.8)

I(2)(α) = C · d2
eff(α) · I(1) 2 · sin2(∆k(α)L/2)

(∆k(α)/2)2
. (6.5)

This angular dependence of the second-harmonic intensity calculated for a slab
of 1 mm thickness with the refractive indices 2.00 and 2.04 and for a fundamental
wavelength of 1 µm is shown in Fig. 39.
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Figure 39: Calculated Maker fringes for a slab geometry: angular dependence
of the second-harmonic intensity for a plane parallel slab rotated about an axes
perpendicular to the laser beam.

Fitting the angular dependence given in Eq. 6.5 to a measured fringe pattern yields
∆k(α). Relative measurements of the various tensor elements of one material deff

and extrapolations to the respective dik are possible by using plates of different
orientations and different light polarizations.

The values of one material can be referred to a ‘standard’ by comparing to slabs of
this standard material using the identical geometry. The magnitude of the effective
second-harmonic tensor element relative to that of the standard material can be
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obtained from the relation [1]

deff

dstd
eff

=

[
IM(0)

Istd
M (0)

η

ηstd

]1/2
Lstd

c (0)

Lc(0)
(6.6)

where IM is the intensity envelope, η the reflection correction, and Lc the coher-
ence length, all taken at normal incidence (α = 0).

Instead of rotating a plane parallel slab, one can use a wedge shaped crystal to
produce Maker fringes. The geometry is shown in Fig. 40. In such a geometry

Figure 40: Wedge geometry for the measurement of Maker fringes. A crystal
wedge is moved perpendicular to the laser beam, the second-harmonic intensity
is measured as a function of the lateral shift.

the orientation of the crystal is fixed, the wave vector mismatch ∆k thus is kept
constant, only the effective length L is varied according to the lateral shift. The
second-harmonic intensity is given in a similar way as in Eq. 6.5

I(2)(L) =

∫
C · d2

eff · I(1) 2(r) · sin2(∆k L(r)/2)

(∆k/2)2
dr , (6.7)
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the integration has to be performed over the laser beam area. Depending on crys-
tal orientation and light polarizations, deff in general can be expressed by a single
element dik. Again, accurate relative measurements are possible using different
orientations and polarizations and comparisons to standard crystals.

Typical (calculated) intensity dependences as a function of the lateral shift of the
wedge are shown in Fig. 41. Due to the constant wave vector mismatch ∆k the
measured dependences in a wedge measurement are much simpler – strongly
sinusoidal with constant amplitude if absorption can be neglected – and thus easier
to evaluate than in a slab measurement.

6.3. Absolute Measurements by Phase-Matched SHG

The methods discussed in the preceding two sections both are not well suited
for absolute measurements of d, although Maker fringe measurements in principle
could be evaluated in that way. To get accurate absolute values, one can apply
phase-matched harmonic generation carried out under a well-defined geometry.

One scenario of a ‘well-defined geometry’ is the application of Gaussian beams as
delivered e. g. by an ideal laser working in TEM00 mode. Some basics of Gaussian
beams are summarized in the box on page 129. As shown there, the spatial
behavior of the light amplitude in a Gaussian beam can be exactly described.
In a nonlinear crystal this spatial behavior is modified by the refractive index, in
addition, walk-off effects (see section 5.4) may hamper the generation of harmonic
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Figure 41: Calculated Maker fringes for a wedge geometry: second-harmonic
intensity as a function of the lateral shift for three different laser beam sizes (0, 70,
200 µm). For the calculation refractive indices of 2.00 and 2.04 were assumed, a
fundamental wavelength of 1 µm and a wedge angle of 5◦.

light.

Considering all these geometry influences, Boyd and Kleinman obtained an ex-
act integral expression for the second harmonic power generated by a focused
Gaussian beam. The mathematical description is found in their rather comprehen-
sive publication [7] or – summarized – in [1]. The application of their mathematical
formalism allows for the absolute determination of effective SHG tensor elements
deff from the measurements of fundamental and second harmonic powers and the
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Properties of Gaussian beams

For most theoretical considerations in op-
tics, plane waves are assumed as a solu-
tion of the wave equation. Things are kept
simple in that way. In all practical systems,
however, wave fronts can not extend to in-
finity, we never have exact plane waves.
To describe, what we colloquially character-
ize as a ‘light beam’, the so-called paraxial
approximation can be used. It’s useful for
the description of laser beams as well as
e. g. for wave transformation calculations in
conventional optical systems like combina-
tions of lenses.
Restricting it to a single frequency and sep-
arating off the time dependence, from the
wave equation the Helmholtz equation is
derived

(∆ + k2)E(r) = 0 . (6.8)

In the paraxial approximation, it is as-
sumed, that the wave propagates only in z
direction, not in the x and y direction

E(r) = Ψ(x, y, z)e−ikz . (6.9)

Neglecting ∂2Ψ/∂z2, as Ψ varies only
slowly with z, we arrive at the paraxial wave
equation

∂2Ψ
∂x2

+
∂2Ψ
∂y2

− 2ik
∂Ψ
∂z

= 0 . (6.10)

The further treatment of this equation can
be found in textbooks about optics, e. g.
in [6]. The simplest solution is a circular
symmetric Gaussian amplitude distribution.
Such a Gaussian beam then can be char-
acterized by parameters which all can be
referred to the minimum beam waist w0 and
the wavelength λ

Ψ(x, y, z)=A0
w0

w(z)
exp

(
−x2 + y2

w2(z)

)
(6.11)

· exp
(
−ik

x2 + y2

2R(z)
+ i arctan

z

z0

)
,

A0 is an amplitude factor. The geometry
near the minimum beam waist is sketched
in Fig. 42.
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Figure 42: Profile of a Gaussian beam near
the focus.

The beam waist w is defined as the dis-
tance from the beam axis where the ampli-
tude has decreased to 1/e. In terms of the
minimum beam waist it is given by

w(z) = w0

√
1 + (z/z0)2 . (6.12)

The distance z0 from the minimum beam
waist, where the beam area is twice the
minimum area, is called the confocal para-
meter or Rayleigh length

z0 =
π

λ
w2

o . (6.13)

The curvature radius R of the phasefront of
the wave is

R(z) = z
[
1 + (z0/z)2

]
, (6.14)

the beam divergence

Θ = w0/z0 =
λ

πw0
. (6.15)

From Eq. 6.14 follows that the phasefronts
have their maximum curvature at z0. The
region |z| < z0 is often called near field , that
outside (|z| > z0) far field .
The minimum achievable beam waist for
a Gaussian beam can be derived from
Eq. 6.15 (it is limited by Fresnel diffraction)

w0,min =
λ

πΘmax
=

F#λ

2π
(6.16)

where F# is the F number (aperture) of the
optical system used.
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evaluation of the beam and crystal geometries. Many authors have shown in nu-
merous measurements that an accuracy of approximately 10 % for deff may be
achieved. A drawback of the method is that it delivers the effective d for the special
phase-matching configuration which for many symmetries is an angle-dependent
combination of several diks. To get the individual elements, the method thus has
to be combined with a relative one (Maker fringes).

6.4. Z-Scan Technique

Some nonlinear properties of materials can be measured using an experimental
setup where the material under consideration is moved along the beam axis (z
axis) through the focus region of a focused beam. The properties which can be
measured in such a geometry include nonlinear absorption, also referred to as
two-photon absorption, and nonlinear refraction. Measuring these two quantities,
the complex third order susceptibility can be derived.

According to Eq. 4.7 the third order nonlinear polarization for ω = ω + ω − ω can
be written as

P(3)(k, ω) = ε0χ
(3)(k = k + k− k, ω = ω + ω − ω)E(k, ω)E(k, ω)E(k, ω) . (6.17)

This is a contribution to the (linear) polarization at ω which acts like an intensity-
proportional contribution to the linear susceptibility. Writing absorption and refrac-
tive index with constant and intensity-dependent terms

α = α0 + βI and n = n0 + n2I , (6.18)
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the real and imaginary part of χ(3) can be derived from the intensity-dependent
terms

Reχ(3) ∝ n2 and Imχ(3) ∝ β . (6.19)

In Z-scan measurements the light intensity on the sample varies when moving
through the focus of a Gaussian beam (for the properties of Gaussian beams
see the box on page 129). Thus the intensity-dependent parts of absorption and
refraction are influenced.

The typical geometries for Z-scan measurements are sketched in Fig. 43 and 44.
The focused Gaussian beam is propagating in z direction, the crystal is moved
through the focus. The integrated intensity will be influenced mainly by the nonlin-

Figure 43: Z-scan: open aperture geometry, the integrated light intensity is mea-
sured as a function of crystal position. Left: thin sample (< z0 of the Gaussian
beam), right: thick sample (> z0).

ear absorption, the angular distribution of the intensity, however, will be affected by
both nonlinear absorption and refraction. Thus in an open aperture geometry the
nonlinear absorption can be measured, in a closed aperture geometry the nonlin-
ear refraction. One has to discriminate whether the sample is thin or thick (com-
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Figure 44: Z-scan: closed aperture geometry, the light intensity in the center of the
beam is measured as a function of crystal position.

pared to z0 of the Gaussian beams). For both cases comprehensive mathematical
descriptions have been developed [8, 9] which can be used for the evaluation of
Z-scan measurements.

The experimental results of typical Z-scan measurements (here on lithium niobate
crystals) are shown in Fig. 45 together with fit curves [10]. From the fit, the authors
derive the values for the real and imaginary parts of χ(3) to be 1.02 × 10−20 m2V−2

and 2.03× 10−21 m2V−2, respectively.

It should be emphasized that for Z-scan measurements lasers with extremely short
high-power pulses should be used due to two main reasons:

• Values of χ(3) in general are small and the (relative) effects scale with the
laser power. High laser power thus facilitates the measurement distinctly.

• Thermal effects and other slow effects like the photorefractive effect may
lead to similar results as the third order susceptibility. They can be efficiently
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Figure 45: Z-scan measurements on lithium niobate for various laser intensi-
ties [10]: (a) 22, (b) 12, (c) 6 GW/cm2. Experimental data (circles) and theoretical
fits (solid lines). Left: open aperture geometry – nonlinear absorption, right: closed
aperture geometry – nonlinear refraction. The curves for (b) and (c) are vertically
shifted for presentation.

suppressed when extremely short pulses are applied.
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7. Non-Collinear Harmonic Generation

Usually nonlinear optical processes are regarded to be collinear which means that
all participating light beams are pointing approximately into the same direction.
Such collinear geometries have the advantage of large interaction lengths, thus
optimize the efficiency of the nonlinear interaction – provided that phase matching
or quasi phase matching is obeyed. In collinear geometries the momentum con-
servation law is fulfilled in a scalar sense, the lengths ki of all vectors ki add up to
zero.

However, it’s not a must to work with collinear beams, non-collinear interactions
are possible as well. The momentum conservation law then is only fulfilled in a
vectorial sense ∑

ki = 0 yet
∑

ki 6= 0 . (7.1)

As the interacting beams are inclined to each other, the intersection volume will be
small, the resulting short interaction length will hamper efficiency. Non-collinear
geometries are therefore not suitable for efficient frequency conversion, they are
‘only’ interesting for their physics and – as we will see – they can be useful for ma-
terial characterization. Some examples for non-collinear interactions shall illustrate
this.
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7.1. Induced Non-Collinear Frequency Doubling

This technique utilizes two fundamental light beams inclined to each other to fulfill
the vectorial phase matching condition

k2 = k1 + k′1 . (7.2)

The corresponding geometry is sketched in Fig. 46.

Θ Θ’

k
2

k
1 k

1
’ Figure 46: Momentum diagram for induced non-

collinear frequency doubling.

The vectorial phase matching condition of Eq. 7.2 can be referred to a condition
for the respective refractive indices n(ω,k). Using

|k2| = |k1| cos Θ + |k′1| cos Θ′ and |k| = ω

c
np(ω,k) (7.3)

(p indicates the light polarization) yields

(ω1 + ω′1)np(ω1 + ω′1,k1 + k′1) = ω1nq(ω1,k1) cos Θ + ω′1nr(ω
′
1,k

′
1) cos Θ′ . (7.4)

The two fundamental beams usually are derived from the same laser as schemat-
ically sketched in Fig. 47 which means ω1 = ω′1 = ω. Furthermore, a geometry
can be chosen where the two fundamental beams are arranged symmetrically
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with respect to the index ellipsoid and have symmetric polarization, which further
simplifies Eq. 7.4 to

np(2ω,k2) = nq(ω,k1) cos Θ . (7.5)

Figure 47: Experimental arrangement for measuring induced non-collinear fre-
quency doubling. S: beam splitter, O: focussing lens, K: temperature controlled
sample holder, moveable in all three spatial directions, B: aperture for blocking the
fundamental beams, PM: photomultiplier.

The angle Θ and the polarizations of the incident beams have to be chosen in
an appropriate way to fulfill Eq. 7.5. Obviously this condition is very sensitive
to variations in the refractive indices. As in more detail shown in Fig. 48, the
interaction volume, i. e. the region from which second harmonic light originates, is
limited in all three spatial dimensions. Thus such an experiment can be used to get
information just about the volume element under illumination. Moving the sample
in all spatial directions yields a fully three-dimensional topography. The resolution
depends on the beam geometries and on the angle Θ.

The technique may be illustrated by two typical applications concerning the char-
acterization of optical crystals – composition measurements in lithium niobate and
detection of domain borders in potassium niobate [1].
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Figure 48: Induced non-collinear
frequency doubling: detailed beam
geometry inside the sample.

Composition Measurements in Lithium Niobate Lithium niobate is one of the most
important crystals for many electro-optic and acousto-optic devices. Its chemical
formula is LiNbO3 but the real composition usually deviates from the stoichiometry
described by the formula. Crystals of lithium niobate are commonly grown at the
congruently melting composition, i. e. at the composition where liquid and solid
states of equal compositions are in an equilibrium. This composition is at approx-
imately 48.5 mole% of lithium oxide. Crystals grown at this congruently melting
composition are of excellent optical quality and of good homogeneity. Some of the
properties, however, could be improved in crystals of stoichiometric composition.
So for instance the electric field necessary for periodic poling would be consid-
erably lowered. Various efforts therefore have been made to achieve material of
stoichiometric composition.

One technique now used by several groups is the so-called vapor transport equili-
bration (VTE) where thin plates of lithium niobate are heated up in a stoichiometric
mixture of lithium oxide and niobium oxide. Diffusion then leads to the composition
equilibration between crystal and surrounding oxide powder. To improve and opti-
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mize the technique, the success of these treatments has to be carefully checked.
Induced non-collinear frequency doubling is one possibility to monitor the compo-
sition inside the crystal after the treatment with a good spatial resolution.

Many of the material properties of lithium niobate depend on the composition,
these include the refractive indices. The ordinary index is practically independent
from composition, the extraordinary index shows an expressed dependence which
is approximately linear. The two dependences for various wavelengths are shown
in the left part of Fig. 49.

Figure 49: Composition dependence of the refractive indices of lithium niobate for
various wavelengths (left) [2] and therefrom calculated functional dependence be-
tween phase matching temperature for induced non-collinear frequency doubling
and composition for several angles Θ (right) [3]. The calculation is made for a
fundamental wavelength of 1064 nm (Nd:YAG laser).
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As – like in every material – the refractive indices are temperature dependent,
phase matching conditions can be adjusted using the temperature as a parameter.
The two dependences can be combined, the measured phase matching tempera-
ture for a fixed angle Θ can be utilized as a very sensitive indicator for the crystal
composition. This functional dependence, composition versus phase matching
temperature, is shown in the right part of Fig. 49 for several angles Θ. The curves
are calculated using a generalized fit for the refractive indices of lithium niobate as
a function of wavelength, composition, temperature, and doping [3, 4].

From the dependences in Fig. 49 an excellent sensitivity of the method is apparent,
at least for relative measurements. One degree variation in the phase matching
temperature corresponds to a variation of 0.005 mole% in the lithium oxide con-
centration in the crystal.

A typical measurement on a VTE-treated sample is shown in Fig. 50. The sample
had been treated for a comparably short time, thus the crystal had not reached
the final homogeneity. Instead, the diffusion profiles in two different directions, z
and x, with their characteristic form of a complementary error function (erfc) are
observed.

Domain Borders in Potassium Niobate Ferroelectric materials commonly undergo
a phase transition from a high temperature paraelectric to a low temperature ferro-
electric phase. Depending on the symmetries of the high- and the low-temperature
phases ferroelectric materials may contain ferroelectric domains in different geo-
metric configurations. Thus materials with a tetragonal or trigonal symmetry both
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Figure 50: Composition pro-
file in a VTE-treated lithium
niobate sample. At the bor-
ders (z = 0, x = 0, x =
4) a stoichiometric composi-
tion of 50 mole% lithium ox-
ide is reached whereas near
the center of the sample the
composition is still the con-
gruently melting one of the
untreated material.

in the high- and in the low-temperature phase can form domains only in two po-
larization directions – parallel or antiparallel to the crystallographic c-axis. The
refractive indices are identical for both domain directions. In contrast to this, ma-
terials with a high-temperature cubic and a low-temperature tetragonal phase can
form domains with their polar axis pointing into any of the six directions of the for-
mer cubic axes. There are thus three possible orientations of the index ellipsoid.
Materials belonging to the first group include lithium niobate, lithium tantalate and
strontium barium niobate. To the second group belong all perovskites including
barium titanate and potassium niobate.
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To detect such misoriented domains one can utilize the different phase-matching
directions for the different orientations. Adjusting the two crossed laser beams
such that phase matching for one orientation is achieved, large second-harmonic
intensities are measured when inside a properly oriented domain and practically no
intensity outside. The spatial derivative of the intensity field then yields the borders
between adjacent domains of different orientation. Fig. 51 gives an example for
such a measurement.
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Figure 51: Border plane between
two domains in potassium nio-
bate which have different orien-
tation.
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7.2. Spontaneous Non-Collinear Frequency Doubling

In contrast to induced non-collinear frequency doubling, spontaneous non-collinear
frequency doubling is a type of optical second harmonic generation that uses ran-
domly scattered light to provide additional fundamental beams in order to accom-
plish non-collinear phase matching [5]. This scattered light may arise from the
crystal itself due to inhomogeneities or impurities or may be forced by suitable
optics (ground glass plate in front of the sample).

The corresponding momentum diagram is shown in Fig. 52. Again the vectorial
phase matching condition described by Eqs. 7.2 – 7.4 has to be fulfilled.

Θ
Θ’

k
2

k
1

k
1
’

Figure 52: Momentum diagram for spontaneous non-
collinear frequency doubling. Out of the infinite num-
ber of scattering angles (indicated by the gray vec-
tors) only Θ + Θ′ matches.

As light is scattered in all three-dimensional directions, phase matching now can
be achieved for a multitude of angles Θ+Θ′ around the direction of the fundamental
beam. This leads to a cone of second harmonic light. The cone angle Θ depends
on the crystallographic direction and the respective effective refractive indices. To
keep it simple, the fundamental beam is directed along one of the axes of the index
ellipsoid yielding a cone of approximately elliptic shape. A typical experimental
arrangement for the measurement is shown in Fig. 53
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Figure 53: Setup for mea-
suring spontaneous non-
collinear frequency doubling.
The input polarization can
be varied by half-wave plate
λ/2 and polarizer P. The
beam is slightly focused by
lens L1 onto the crystal K
which can be scanned in
two directions by means
of stepping motors SM.
The generated light cone is
projected onto the ground
glass plate S yielding an
elliptic ring which is viewed
by a CCD camera.

The cone of second-harmonic light is projected onto a ground glass plate yield-
ing a nearly elliptic ring which is captured by a video system. The fundamental
light is removed by an appropriate optical filter of type BG18. The ring parameters
depend very sensitively on the refractive indices for the fundamental and the sec-
ond harmonic light at the position of the focused fundamental light beam. Thus
a two-dimensional topographical characterization of crystals is possible when the
sample is moved perpendicular to the fundamental beam direction. The spatial
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resolution depends on the fundamental beam geometry, i. e. the focusing of the
Gaussian beam (see box on page 129).

The result of such a measurement, where a sample is two-dimensionally scanned,
is usually a large set of ring images. One can show that it is sufficient to measure
the length of one of the principal axes of the ellipses, thus the amount of data can
be drastically reduced. An automatic scheme had to be developed to do this in
a reliable way [6]. Fig. 54 shows some typical ring pictures (left) and the ellipses
calculated by the evaluation program (right).

Figure 54: Spontaneous non-collinear frequency doubling: ring pictures from dif-
ferent positions of a lithium niobate sample. Left: original video images, right:
overlaid with the calculated ellipses.

Again, two examples may illustrate the application of the technique for materials
characterization, the homogeneity and composition measurement of a pure lithium
niobate crystal and the characterization of so-called growth striations in Mg-doped
lithium niobate.
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Homogeneity and composition of lithium niobate A lithium niobate crystal grown
near the stoichiometric composition had to be characterized. The crystal had been
grown along the z-direction. For the measurements a small sample was cut out of
the grown crystal and was two-dimensionally scanned with the technique along the
z- and the x-axis. From the detected ellipses the refractive indices and therefrom
the crystal composition can be derived. The result is plotted in Fig. 55, a two-
dimensional topography of the crystal composition.
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Figure 55: Homogeneity and
composition of a lithium nio-
bate crystal grown with a
lithium oxide content of ap-
proximately 49.5 mole%.

A nearly linear variation of the composition in the growth direction of the crystal
is clearly detectable. The figure also gives an impression of the sensitivity of the
technique, composition variations down to approximately 0.01 mole% in the lithium
oxide content can be detected.
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Growth striations in Mg-doped lithium niobate In crystals sometimes narrow stripes
are visible which indicate some sort of inhomogeneity. Crystal growers call these
striations. Several explanations are possible: conglomeration of impurities, inter-
nal stress, composition variations etc. Fig. 56 shows the topography of such stri-
ations in Mg-doped lithium niobate measured with the spontaneous non-collinear
frequency doubling technique. At the striations small deviations in the refractive
indices are detectable which indicate a corresponding slight variation in the com-
position of the crystal.
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Figure 56: Growth striations in
Mg-doped lithium niobate. The
striations are found to be per-
pendicular to the growth direc-
tion (z). The slight variations
in the cone angle indicate cor-
responding variations in the re-
fractive indices and in the crystal
composition.
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7.3. Non-Collinear Scattering

In a strict definition, non-collinear scattering is not a real non-collinear harmonic
generation process. However, the experimental results are quite similar. It was
described by Kawai et al. [7] who detected it in strontium barium niobate. If a
strong infrared laser is directed onto a crystal of strontium barium niobate perpen-
dicular to the polar axis (c-axis) non-collinear second-harmonic light propagating
in a plane perpendicular to the c-axis is visible. Fig. 57 gives an illustration.

The effect is only detected in unpoled crystals where needle-like microdomains
exist. In the domains second-harmonic light is generated via the tensor elements
d31, d32, and d33. No collinear phase-matching condition can be fulfilled in SBN due
to the small birefringence of the material. Therefore, no intense collinear harmonic
light is generated. Instead a part of the harmonic light is scattered at the domain
boundaries, and – as the domains are directed along the c-axis – this scattering
occurs perpendicular to the c-axis.

7.4. Conical harmonic generation

An interesting mechanism for the generation of harmonic light is the use of higher
order nonlinearities. This mechanism for Conical Harmonic Generation was de-
scribed and experimentally verified in 2002 by Moll et al. [8]. The wave vector
geometry for second-harmonic generation via this mechanism is shown in Fig. 58.
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Figure 57: Non-collinear scattering. Pictures from left to right: (1) SBN crystal
on a rotation stage. (2) Infrared laser directed along the c-axis (visible due to
the sensitivity of the video camera at 1064 nm). (3) Crystal rotated by 90 ◦ –
infrared laser directed perpendicular to the c-axis. (4) Ditto but infrared light now
suppressed by a suitable filter.
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Θ
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2
’ Figure 58: Wave vector diagram for conical second-

harmonic generation via a 5th order nonlinear inter-
action.

Five waves (4× k1, k′2) have to interact to produce a second-harmonic wave k2. As
k′2 also has to be generated by the fundamental pump wave k1, the whole process
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can be regarded as parametric amplification of a signal and an idler beam, k2 and
k′2, respectively. In the pump mechanism an appropriate higher-order nonlinear
term has to be included. As usual for parametric amplification, the theoretical
description consists of three coupled equations for the three interacting waves
k1, k2, k′2. Generally, the two generated waves may be of different frequencies,
most effective amplification is achieved, however, when the frequencies of signal
and idler are identical. A comprehensive treatment is given in the above cited
publication.

The wave vector geometry in Fig. 58 shows that for the generation of the second-
order harmonic a 5th order nonlinear interaction is responsible. This can be gen-
eralized: radiation at the mth order harmonic can be generated through the use
of a (2m+1)-order nonlinearity. The tensor of the corresponding nonlinear sus-
ceptibility is of rank (2m+2), i. e., always of even rank. Thus this process allows
for the generation and amplification of both odd- and even-order harmonics in all
materials, even in isotropic ones. Additionally, this process can always be phase
matched in normal-dispersion materials without the use of birefringence. From the
wave vector diagram we can derive

cos Θ = n(ω)/n(2ω) (7.6)

or – for the generation of the mth order harmonic –

cos Θ = n(ω)/n(mω) . (7.7)

Both equations can always be fulfilled for normal dispersion as in this case n(mω) >
n(ω). In isotropic materials these conditions for Θ lead to circular cones of gen-
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erated harmonic light. Fig. 59 shows the experimental results for third-harmonic
generation in sapphire.

Figure 59: Experimental spec-
trum of conical third-harmonic
emission from sapphire and the
corresponding photograph of the
output ring (inset) for the case in
which the wavelength of the in-
put pulse is centered at 1500 nm.
The spectral width results from
the bandwidth of the fundamen-
tal pulse. The cone angle is
≈12° and the conversion ef-
ficiency is ≈10-6 (taken from
Ref. [8]).

7.5. Domain-Induced Non-Collinear SHG

A new non-collinear mechanism for the generation of second-harmonic light has
been recently found in strontium barium niobate (SBN) [9]. A circular cone of
second-harmonic light is generated when a fundamental beam of intensive laser
light is directed along the crystallographic c-axis. The corresponding ring projected
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onto a screen is shown in Fig. 60 (it’s the second image of Fig. 57 but now with the
infrared light suppressed).

Figure 60: SHG ring in strontium barium niobate. The fun-
damental laser beam is directed along the crystallographic
c-axis. In this direction, no SHG light is visible, instead a
circular cone of green light is visible. The image shown cor-
responds to the second image of Fig. 57, the infrared light is
suppressed by an appropriate filter.

The nonzero elements of the SHG tensor of strontium barium niobate derived in
section 4.7 show that no second harmonic wave in c-direction can be expected,
no collinear SHG is possible for a fundamental beam along the c-axis. The light
polarization in the ring is radial, the polarization direction points to the center of
the ring (Fig. 61). And it is independent from the polarization of the fundamental
beam. Both facts – radial polarization and no influence of the fundamental beam’s
polarization – conform with the fourfold symmetry around the c-axis.

Several authors have demonstrated that micrometer-sized needlelike domains play
an important role for light scattering and for the type of the phase transition in
SBN [7, 10, 11, 12]. These domains are in antiparallel order, the ferroelectric
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Figure 61: Polarization of the SHG ring in strontium barium niobate. From left
to right: (1) without analyzer, (2) analyzer horizontal, (3) analyzer diagonal, (4)
analyzer vertical.

polarization is parallel or antiparallel to the crystallographic c-direction. To prove
whether these domains also are responsible for the non-collinear second-harmonic
process, a sample was poled by cooling it down from the high-temperature para-
electric phase with an electric field applied in c-direction. After that the ring struc-
ture had vanished. This is also a strong indication that higher nonlinearities of
odd order [8], discussed in the preceding section, which are insensitive to poling
and the corresponding symmetry aspects, do not contribute to the effect. Hav-
ing thus proven that antiparallel ferroelectric domains are the basic cause for this
non-collinear SHG effect, model calculations based on antiparallel domains were
carried out to explain the ring structure.

Plane light waves propagating along the c-direction of SBN contain only electric
field components perpendicular to this direction, E1 and E2. According to the
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shape of the SHG tensor for SBN, these field components produce a second order
nonlinear polarization P3. The sign of P3 depends on the domain orientation, here
indicated by arrows:

P3(⇑) = d31E1E1 + d32E2E2 and (7.8)
P3(⇓) = −d31E1E1 − d32E2E2 . (7.9)

For simplicity, all oscillatory factors have been omitted from E and P . E may be
assumed to be monochromatic at frequency ω, then P accordingly is monochro-
matic at 2ω. The induced second-harmonic polarization P3 acts as a source for
dipolar radiation at this frequency 2ω.

The simplest nontrivial arrangement of domains contains just two antiparallel or-
dered ones. For the calculation, the domain sizes were assumed to be in the order
of the second-harmonic wavelength. To compute the far-field behavior, the do-
mains were replaced by suitable dipolar point sources. The angular intensity distri-
bution due to the interference of the respective dipolar radiation fields is schemat-
ically sketched in Fig. 62 for the plane defined by the two dipole vectors.

Figure 62: Angular distribution of the
second-harmonic radiation originating
from two antiparallel domains in SBN.
The exciting wave propagates in c-
direction from the left side.
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No intensity in forward direction, instead a broad angular intensity distribution
around two distinct angles symmetric to the c-direction is found. The dominant
angles are determined by the domain sizes. Due to the oscillation direction of the
dipoles, the polarization of the second-harmonic light is in the plane shown.

Increasing the number of equally sized domains leads to a narrowing of this an-
gular distribution similar to the diffraction through an optical grating. Yet in real
crystals it cannot be expected that one deals with ideal equally-sized domains. A
generalization consequently has to assume a large number of domains with a ran-
dom distribution of sizes. A model calculation on an arbitrarily chosen domain dis-
tribution reveals an angular dependence of the generated second-harmonic light
as shown in Fig. 63.

−40 −20 0 20 40
Internal Angle Θ [deg]

Figure 63: Angular distribution of
the second-harmonic light inten-
sity arising from a planar array
of 200 randomly-sized antiparal-
lel ordered domains in SBN. A
part of the domain arrangement
is sketched on the left side: c-
direction is horizontal, dark do-
mains are polarized parallel, light
ones antiparallel to this direction,
the exciting wave propagates in
c-direction.
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Again, the polarization of the second-harmonic light is in-plane. Varying the ran-
dom distribution of the domain widths varies the random fine structure of the inten-
sity distribution; the common features, however – no intensity in forward direction
and a broad angular distribution starting a approximately 10°– are maintained. Ex-
tending the model to an arrangement of needle-like long domains means that, in
addition to the calculated angular distribution of Fig. 63, strong momentum con-
servation has to be obeyed, yielding

k2 = k1 + k′1 + kg . (7.10)

Here, kg represents any spatial periodicity present in the domain arrangement,
k1 = k′1 characterizes the fundamental beam in c-direction, k2 one of the har-
monic waves. Due to the random distribution of domain widths, kg shows up a
corresponding reciprocal distribution. The direction of kg, however, is strictly per-
pendicular to the c-axis according to the extent of the domains in c-direction. The
momentum geometry for the phase-matching condition of Eq. 7.10 is sketched in
Fig. 64.

k
1

k
1
’

k
2

k
g

Θ
Figure 64: Wave vector diagram for Eq. 7.10. k1 and
k′1 are in c-direction, kg perpendicular to it with a dis-
tribution as indicated by the dashed line.

The angle Θ between fundamental and harmonic wave vectors inside the crystal
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is defined by

cos Θ =
k1 + k′1
k2

=
no(ω)

ne(Θ, 2ω)
. (7.11)

Using the refractive index data for SBN, Eq. 7.11 yields an internal angle Θ of
17.1°, corresponding to an external angle of 44.8°. This is in excellent agreement
with the measured angle of approximately 45°.

The extension of the model to a three-dimensional arrangement of needle-like
long domains with randomly distributed widths is straightforward. Angular intensity
distribution and phase-matching condition of Eq. 7.10 lead to a cone of second-
harmonic light with internal cone angle Θ. In-plane polarization for all radial direc-
tions then accounts for the radial polarization experimentally found in the ring.
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8. Continuous wave solid-state laser systems with
intra-cavity second harmonic generation [1, 2, 3,
4]

8.1. Fundamentals

We will at first recall the key aspects of the laser process. The basic principle
of amplification of a light wave transmitting through a laser medium is shown in
Fig. 65, where uin and uout denote the incoming and outgoing photon flux of the
light wave with the relation uout >> uin . The phenomenon of amplification and
its efficiency result from light interaction processes with the laser medium shortly
summarized in the following.

Figure 65: Basic Principle of light amplification. uin and uout denote the incoming
and outgoing flux of the light wave with the relation uout >> uin
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8.1.1. Absorption

Resonant excitation of electrons from the ground state E1 into an excited atomic
state E2 of the laser medium occurs if the energy of the incoming photon Eph =
~ω reaches the energetic difference between both states Eph = ∆E = E2 − E1

as sketched in Fig. 66a). Here, N1,2 denote the number of atoms in the energy

Figure 66: a) Energy model of the absorption process. Resonant excitation of
electrons from the ground state E1 into an excited atomic state E2 occurs if the
energy of the incoming photon Eph = ~ω reaches the energetic difference between
both states Eph = ∆E = E2 − E1. b) Absorption band centered at the resonance
frequency ω0 with the full width at half maximum ∆ν.

state E1,2 per cm3. As a result of the resonant excitation process the intensity
of the transmitted light wave decreases, i.e., absorption occurs at the resonance
frequency ω0 with a finite full width at half maximum of the absorption band ∆ν
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(Fig. 66b). The number of absorbed photons is given by:

Za = N1 · uin ·B12 · f(ω) (8.1)

with the Einstein (or probability) coefficient B12 and the function f(ω) taking the
frequency dependence into account. Thus the number of transmitted photons Zt

can be expressed with the total number of incoming photons Z0 via Zt = Z0 − Za.

8.1.2. Spontaneous emission

Assuming a finite number of atoms in the electronic state E2, i.e., N2 6= 0, the
process of spontaneous emission occurs (Fig. 67a). It is a result of the limited
lifetime of excited atoms, which is reciprocally proportional to the bandwidth of the
absorption band τ ∼ 1/∆ω. Typical values are τ ∼ 10−8s. The transition of atoms
E2 → E1, and thus N2 → N1, is accompanied by the emission of a photon with
energy ∆E. A characteristic feature of this process is the emission of photons into
all directions of space. The number of spontaneously emitted photons is described
via Zs = N2 · A with the Einstein coefficient A ∼ 1/τ . The fraction of the Einstein
coefficients for absorption and spontaneous emission is expressed by:

A

B12

=
2

π

~ω
c3

(8.2)

with c the speed of light in vacuum.
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8.1.3. Induced emission

Induced emission occurs if there is a finite number of atoms in the electronic state
E2, i.e., N2 6= 0, and a resonant photon is present (Fig. 67b). In this case a photon
Eie

ph = ∆E is emitted. In contrast to spontaneous emission the induced emission
of a photon occurs in the same direction as the incoming photon. Thus the photon
flux of the incoming wave can be amplified:

Zt = Z0 + Zi = Z0 +N2 · Uin ·B21 · f(ω) (8.3)

The energetic balance of a photon flux exposed to a laser medium with N1, N2 6= 0

Figure 67: a) Spontaneous emissions of a photon Ese
ph = ∆E due to relaxation

processes of excited atoms. b) Induced emission of a photon Eie
ph = ∆E by an

incoming photon. In both cases N2 6= 0 is required.

thus results to:
Zt = Z0 + Zi − Za = ∆N · uin ·B12 · f(ω) (8.4)
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with ∆N = N2 −N1. Obviously three cases can be distinguished:

• N2 < N1 : ∆N < 0, i.e. depletion of the incoming light wave

• N2 = N1 : ∆N = 0, i.e. unaffected transmission of the light wave

• N2 > N1 : ∆N > 0, i.e. amplification of the incoming light wave.

The latter case commonly is denoted as occupation inversion. In the thermal equi-
librium the occupation of the excited state depends on the temperature T accord-
ing to N2 = N1 exp(−∆E/kBT ), with the Boltzmann constant kB. Note that N2 ≈ 0
at room temperature since kBT << ∆E. For very high temperatures (T → ∞)
N2 = N1 can be reached resulting in an unaffected transmission of a light wave
through the laser medium. Thus an occupation inversion can not be realized in the
thermal equilibrium at any temperature. In order to overcome this problem laser
media offering an energetic 3- or 4-level system are required.

8.1.4. 3-level system

The energetic scheme of a 3-level system, e.g. of a ruby laser, is shown in Fig. 68.
An occupation inversion ∆N = N2 −N1 is reached under intense illumination with
light of Ep

ph = E3 − E1, so that light of Eph = E2 − E1 can be amplified. Population
of N2 occurs via de-excitation of the optically excited atomic state E3 → E2. Thus
this process is commonly called optical pumping. However, the population of each
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Figure 68: Energetic scheme of a 3-level system.

state and especially the occupation inversion is very sensitive to the intensity W of
the pump light as shown in Fig 69. Several characteristic population ratios can be
distinguished depending on the intensity:

• W = 0 : N2 = 0 ⇒ ∆N/N0 = −1

• W < W0 : N1 > N2 ⇒ ∆N/N0 < 0

• W = W0 : N1 = N2 ⇒ ∆N/N0 = 0

• W > W0 : N2 > N1 ⇒ ∆N/N0 > 0
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Figure 69: Dependence of the ratio ∆N/N0 on the intensity of the pump light for a
3- and 4-level system.

• W � W0 : N1 ≈ 0 ⇒ ∆N/N0 = 1

It is obvious that the occupation inversion ∆N/N0 > 0 occurs for intensities > W0.
In contrast, absorption processes dominate the transmission of the light wave for
intensities < W0.

8.1.5. 4-level system

The scheme of a 4-level system, e.g. Nd-YAG laser, is shown in Fig. 70. The
key feature of the 4-level system is that E1 is empty in the thermal equilibrium,
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Figure 70: energetic scheme of a 4-level system.

i.e. occupation inversion is present as soon as N2 6= 0. This feature is connected
with a comparable small lifetime of the atomic states in E1. As a result there is no
threshold behavior of the ratio ∆N/N0 on the intensity as shown in Fig. 69.

The efficiency of amplification further depends on the interaction length of the light
wave in the laser media by:

Iout = Iin exp

(
B12∆N

c
· l

)
(8.5)

It should be noted, thatN2 reaches saturation with increasing intensity of the ampli-
fied light wave and that there is a non-linear dependence of the amplified intensity
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on the pump intensity as well as on the interaction length. The gain Γ = Iout/Iin is
introduced as measure for the amplification.

8.1.6. Optical resonator

An enhancement of the gain can be reached by using an optical resonator consist-
ing of two mirrors M as shown schematically in Fig. 71. The incoming light wave
is focused by the lenses L into the laser medium in order to enhance the intensity
of the incoming fundamental wave. In dependent on the reflectivity of the mirrors

Figure 71: Optical resonator by two mirrors M with the laser medium. The in-
coming light wave is focused to enhance the incoming intensity of the fundamental
wave.

M the light wave passes by 1/(1−R) times through the laser medium, e.g. with a
reflectivity of R = 0.95 an enhancement by a factor of 20 is reached by the use of
the optical cavity.
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8.1.7. Pump processes

• Optical pumping. Absorption of (laser) light in the laser medium. Typically
found in solid state and liquid laser systems.

• Electrical pumping. Gas recharging in gas- and semiconductor lasers

• Chemical pumping. A + B → AB∗ (AB*: excited molecule) or dissociative:
AB + hν → A+B∗ (B*: excited atom)

Fig. 72 displays three common configurations for optical pumping using lamps: a)
helix-configuration, b) elliptic cavity and c) close coupling. For an efficient optical

Figure 72: Optical pumping with lamps a) helix-configuration, b) eliptic cavity and
c) close coupling.

pumping the spectrum of the pump source (lamp or laser) should be matched to
the absorption spectrum of the laser medium. As an example Fig. 73a shows the
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emission spectrum of a Kr-high pressure lamp and 73b the absorption spectra of
the laser media Nd:YAG and Nd:Glass. Absorption bands of the Nd-center occur
in the near-infrared region at about 800 nm and show a broad absorption band
when embedded in glass. Here, the exposure to light of the Kr-high pressure lamp
will ensure efficient optical pumping, whereas light of a semiconductor laser with
λ = 808 nm is preferable in Nd:YAG.

Figure 73: a) Emission spectrum of a Kr-high pressure lamp, b) Absorption spectra
of the laser media Nd:YAG and Nd:Glass.
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8.2. Cavity design

8.2.1. Optical resonator

In the following we will focus on a 4-level laser system of a Nd:YAG laser medium
optically pumped using a semiconductor laser. Such systems are widely used
and designated as diode-pumped solid-state laser. A typical scheme illustrating
a corresponding cavity design is shown in Fig. 74. The divergent light of a Ga-Al-
As-semiconductor laser (λ = 808 nm)is focused via a lens into the Nd:YAG laser
rod. As a remarkable feature the optical cavity is realized by dielectric mirrors
coated onto the entrance surfaces of the laser rod. A difference in the reflectiv-
ity of 99.9 % and 99.8 % ensures high and low reflector properties such that the
emission of laser light occurs into a preferred direction. According to the energetic
scheme of the Nd:YAG 4-level system light of wavelength λ = 1064 nm is emitted.
Typical system specifications are a pump power of 1 - 2 W and infrared light of
several 100 mWs. It is noteworthy that this cavity design enforces high demands
to the polishing of the laser rod and to the parallelism of the two entrance surfaces
to each other. Other possibilities for a compact cavity design are the prism and
spherical resonator (confocal as well as concentric) as shown in Fig. 75a and 75b.
Open resonators are of advantage to get linearly polarized light. E.g. in Fig. 75c
the entrance faces of the laser rod are cut corresponding to Brewsters law. Internal
reflections are suppressed in the in-line configuration by dielectrically coated sur-
faces (75d). Further, it is possible to influence the laser light by e.g. diaphragms,
modulators, filters, optical switches, etc. .
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Figure 74: Schematic setup of a diode-pumped Nd:YAG laser cavity. The divergent
light of a Ga-Al-As-semiconductor laser (λ = 808 nm) is focused via a lens into the
Nd:YAG laser rod. The optical cavity is realized by dielectric mirrors coated onto
the entrance surfaces of the laser rod with different reflectivity.

Figure 75:
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8.2.2. Laser medium

In addition to the optical cavity great demands are required from the Nd:YAG laser-
rod itself. Beyond the most important are:

• high optical quality: no striations, high optical homogeneity in the refractive
index and absorption coefficient, perfect surfaces

• high optical damage threshold: e.g. cw-laser light up to 1 kW IR at a diameter
of 100 µm.

• high conversion efficiency: Nd:YAG e.g. 1-2 %

• high heat flow in order to avoid thermal lens effects

• good preparation and growth conditions in order to get high quality and to
reduce costs

8.2.3. Losses

One of the key aspects in the cavity design is the balance between the light ampli-
fication Γ and its losses L. For an efficient laser process the condition Γ > l has to
be fulfilled with the threshold condition Γ − L = 0. Losses are distinguished from
1) the laser rod:
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• scattering in the volume or on the surface of the laser rod

• absorption in the volume of the laser rod

• reflection losses at the laser rod entrance faces

• beam distortion due to refraction or diffraction processes at refractive index
inhomogeneities

and b) the laser cavity:

• reflection losses and scattering at the mirrors

• absorption losses in the surrounding medium

• coupled-out intensity

• filters, switches, modulators, diaphragms.

8.2.4. Dimensions of the laser rod

The dimensions of the laser rod, i.e. the length l and the diameter d = 2 · r with
l� r, are related via the Fresnel number:

F =
n · r2

λ · l
. (8.6)
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In order to reduce losses by diffraction the condition F � 1 has to be fulfilled.
Typical values are 5 < l < 20.0 mm. On the other hand the volume of the rod is
decisive for the efficiency of optical pumping, which is described by the Schawlow-
Townes relation for a 4-level system:

P =
P0

P(Γ−L=0)

· V

B12 · τ21 · τc
, (8.7)

whereby τc denotes the lifetime of the photons in the laser cavity and P0 the pump
power. Typical values of ζ = P0/P(Γ−L=0) are ∼1000 for Nd:YAG and ∼30 for ruby
(3-level system).

8.2.5. Estimation of the cavity parameter τc

The measure τc is strongly dependent on the cavity losses and of importance a) to
determine laser losses in order to optimize the cavity design and b) to determine
the optimum pump power. However, τc can not be measured inside the laser cavity.
A widely used experimental procedure is the optical pumping of the laser process
with a single light pulse and the subsequent detection of the kinetics of the out-
coupled intensity. The value τc is then determined from the periodicity and the
damping of the retrieved signal as described in the following.

Optical pumping with pulsed light leads to a temporal development of the number
of atoms N2 in the energy level E2 of the Nd:YAG 4-level system and thus of the
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number of photons Q within the optical cavity. The laser rod contributes via

dN2

dt
= P − B12NQ

V
− N

τ21
(8.8)

with τ21 the characteristic lifetime of the spontaneous emission N2 → N1. The
second and third terms of equation (8.8) account for induced and spontaneous
emission, respectively. The temporal development of the number of photons in the
cavity follows

dQ

dt
=
B12NQ

V
+

N

Mτ21
− Q

τc
(8.9)

and is enlarged by induced and spontaneous emission (1st and 2nd terms) and
is minimized by the restricted lifetime of photons. The measure M accounts for
photons which participate in the eigenmode of the optical cavity. The equation
system is solved with the linear approximation:

N = N0 + ε; N0 =
V

B12τc
Q = Q0 + η; Q0 = M − Pτc (8.10)

where ε and η are small fluctuations of N0 and Q0. Here, the power P inside the
laser cavity and the pump power are connected by P = ζ ·P0 = ζ ·N0/τ21. Solution
of eq. (8.8) and (8.9) yields:

η
τ

}
∼ exp

(
− ζt

2τ21

)
sin
cos

√
ζ − 1

τ21τc
(8.11)
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which represents a harmonic oscillation of period

T 2 = 4π2 τcτ21
ζ − 1

(8.12)

and a damping constant

τd =
2τ21
ζ

(8.13)

In the approximation ζ ≈ 1 we get : T 2 = 2π2τcτd, so that τc can be determined by
the periodicity T and the damping constant τd of the detected laser intensity.

8.2.6. Reduction of unwanted Eigenmodes

The suppression of unwanted longitudinal Eigenmodes is related with a cavity of
high mechanical stability. This can be realized using a temperature controlled
cavity where all optical elements including the laser rod are stabilized thermally.
Further materials with extreme low extension coefficients are commonly used (su-
per invar). Unwanted transversal Eigenmodes are suppressed by introducing di-
aphragms inside the optical cavity. A birefringence filter, i.e. a combination of
polarizer and retarder wave-plate, is commonly used to get linear polarized laser
light with an extremely small bandwidth. Fig. 76 shows the setup of an optical res-
onator with a temperature controlled base plate and laser rod, a birefringence filter
BF and a diaphragm D. Note the specific demands for the dielectric coatings of the
laser rod (low reflection coating for λ = 1064 nm and λ = 808 nm) and for the trans-
mission of the high reflector (high transmission for λ = 808 nm, high reflection for λ
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Figure 76: Setup of an optical resonator with a temperature controlled base plate
and laser rod, a birefringence filter BF and a diaphragm D.

= 1064 nm). Typical specifications of such laser systems are a single pass power
of 20-40 mW of infrared light (λ = 1064 nm) with a pump power of P (λ = 808nm)
= 2 W and dimensions of the laser rod of 10 mm length and 3 × 3 mm1 surface
area. An optimum cavity design leads to an intra-cavity power of 20 - 50 W and of
≈ 500 mW extra-cavity.

8.2.7. Cavity design with intra-cavity second harmonic generation

The next step is the design of a Nd:YAG laser system with intra-cavity second
harmonic generation to get intense continuous-wave laser light of wavelength λ =
532 nm. The demands for the design of an optical cavity with intra-cavity second
harmonic generation (SHG) are

• Two independent adjustable beam waists, one localized in the laser rod and
one in the non-linear crystal for SHG. The dimensions of the beam waist in
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the laser rod has to be adapted for the beam waist of the laser light for optical
pumping. The beam waist within the non-linear crystal should be optimized
for a high intensity under consideration of the crystal length.

• A high mechanical stability of the optical cavity over a long timescale.

• Linear polarized laser light.

Further the redesign of the Nd:Yag optical cavity should account for the following
aspects

• losses due to the non-linear crystal, especially losses due to SHG

• dielectric coatings for the non-linear crystal (λ = 1064 nm and λ = 532 nm)

• transmission of the low reflector (high transmission at λ = 532 nm)

• refractive index of the non-linear crystal influences the beam waist intra-
cavity.

With respect to these demands and aspects it should be stressed that intra-cavity
second harmonic generation is inevitably necessary to get intense continuous
wave laser light. The power of the frequency doubled beam is ∼ I2

1064 and I ic
1064 >>

Iec
1064, where ic and ec denote intra- and extra-cavity, respectively. In contrast, SHG

with pulsed laser light is commonly realized in an extra-cavity configuration.
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The disadvantage of intra-cavity SHG is two-folded: a) a more complicated de-
sign of the optical cavity is enforced and an exchange of the non-linear crystal is
impossible, e.g. for purposes of optimization, b) the demands to the non-linear
crystal are enormous especially due to the extremely high power of the fundamen-
tal wave (high risk for optically induced mechanical damage). Fig. 77 shows the

Figure 77: principle setup for an optical cavity with intra-cavity SHG.

principle setup for an optical cavity with intra-cavity SHG. All laser properties are
restricted for the generation of infrared light at λ = 1064 nm, i.e., the cavity does
not amplify light of λ = 532 nm. The emission of the frequency doubled laser light
occurs in both directions, but is blocked by the polarizer of the birefringence filter
(the orientation of the electric field vector for type I and type II phase matching are
different to the electric field vector of the fundamental wave). The intensity of the
visible light is comparable small in such systems, e.g., with a pump power of 2 W
and an intra-cavity power of 10 - 50 W a laser beam with ≈ 150 mW at λ = 532 nm
is generated in the output.
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8.2.8. Losses by the non-linear crystal

As already mentioned intra-cavity SHG represents an additional loss and thus the
demand for a large SHG coefficient is questionable. The condition for the threshold
of the laser process with intra-cavity SHG now follows the connection: Γ−L− (K ·
P1064) with P532 = K · P 2

1064 and the non-linear coupling coefficient

K = KIR · li · kIR · h(σ, ζ) · 107 (8.14)

Here, kIR = 2πnIR/λIR denotes the wave vector of the infrared laser beam, li the
interaction length of the fundamental and harmonic waves and KIR is a material
specific constant, e.g. KIR = 128π2ω2/c3n2

IRnV IS · d32 for Ba2NaNb5O15. The
function h(σ, ζ) is given by the theory of Boyd and Kleinmann and takes diffraction,
double refraction and absorption processes into account. Here σ = 1/2b∆K is
connected to the phase matching parameter ∆K and ζ = li/b to the confocal
parameter b = ω2

0/kIR with the beam waist ω0. The dependencies of PSHG on the
coupling coefficient and of the coupling coefficient on the beam waist are shown
in Fig. 78.

8.2.9. Selection of the non-linear crystal

The selection of an adequate non-linear crystal is restricted by
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Figure 78: PSHG as a function of the coupling coefficient K and of K on the beam
waist ω0.

• a large SHG coefficient

• the refractive index and the dispersion

• the optical transmission range

• the phase matching properties

• the optical damage threshold

• the optically induced mechanical damage threshold

• the optical homogeneity of refractive index and absorption coefficient

• the hardness, chemical stability.
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Some of the commonly used non-linear crystals are given in tab. 6.

Transparency Damage threshold FOM
range (nm) (GW/cm2)

β-BaB2O4 198-3300 10 15
Ba2NaNb5O15 0.001
KH2PO4 200-1500 0.5 1
LiB3O5 2 1
LiNbO3 0.02
LiIO3 300-5500 0.05 50
KTiOPO4 350-4500 1 215
KNbO3 410-5000 0.35 1755
CsD2AsO4 1660-2700 0.5 1.7
(NH)2CO 210-1400 1.5 10.6
LAP 220-1950 10 40
m-NA 500-2000 0.2 60
MgO-LiNbO3 400-5000 0.05 105
POM 414-2000 2 350
MAP 472-2000 3 1600
COANP 480-2000 4690
DAN 430-2000 5090
PPLiNbO3 400-5000 0.05 2460

Table 6: Properties of non-linear crystals. FOM is determined by (d2/n3)(EL/λ)∆θ2.
LAP: L-arginine phosphate monohydrate, m-NA: meta nitroaniline, POM: 3-methyl-4-
nitropyridine N-Oxide, MAP: methyl (2,4-diinitrophenyl) aminopropanoate, COANP: 2N-
cyclooctylamino-5-nitropyridine

http://www.physik.uni-osnabrueck.de
mailto:Klaus.Betzler@uos.de


Nonlinear
Optics

Fachbereich Physik

Contents

JJ J I II

Page 185 of 199

Go Back

Full Screen

Close

Quit

�
08. Mai 2005

Klaus Betzler

KTiOPO4 is widely used for intra-cavity second harmonic generation of cw-laser
light. An important feature is its pronounced birefringence, which is used in com-
bination with a polarizer as birefringence filter.
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